绿色革命的一个重要体现是绿色交通,电动汽车应运而生,其市场需求量也呈现出愈来愈大的趋势。电动汽车充电时间长,充电难是电动汽车推广应用的一个难题。因此,快速充电技术的研究对电动汽车的发展影响重大,意义深远。目前,研究成果比较成熟的快速充电技术主要有智能化变脉冲充电技术和分段恒流充电智能化控制技术。
智能化变脉冲充电技术基本原理:
变脉冲快速充电系统主要由整流器和功率转换器组成,如图(1)所示。
快速充电器根据实时检测到的电池组的端电压、充电电流、温度、动态内阻等信息,按照马斯充电定律,通过采用智能控制算法实施对充电电流脉冲宽度T1、间歇时间T2、放电电流脉冲T3的分段调节,以消除被充电电池组的电极化现象,使电池组时刻处于较佳的电流接受状态,提高充电速度和充电效率。具体控制过程是,首先用较宽的充电脉冲进行充电,蓄电池的端电压上升,当到达充电时间T1时,充电器暂停充电,当充电间歇时间达到T2时充电器继续充电,如此反复,如图(2)所示。
当电压上升到设定的电压值V1时,根据程序的设定,减小充电脉冲占空比,并给蓄电池充电,当电池端电压达到设定值V2时,充电器间歇暂停充电;根据反馈电压自动调节输出脉冲的占空比,经过短时间停止充电,蓄电池的极化电压迅速下降,如此反复循环,直至达到蓄电池组的充电终止电压V3。
该快速充电器首次实现了按照被充电电池的实际充电状态(电流、电压、温度、动态内阻等)对脉冲充电器充电脉冲实施智能化的实时调节,将充电器和被充电电池上升为一个系统问题综合考虑,通过引入智能化调节算法,使该充电器具有更广泛的适用性。
分段恒流充电智能化控制技术基本原理:
分段恒流充电智能化控制电路如图(3)所示。该电路采用 CPU 控制,可对充电电池和充电环境温度进行检测,对电池充电进行计时,采用充电过程中电池的电压和电流,对分段恒流充电过程进行控制。
分段恒流充电使电池的实际充电电流曲线接近充电可接受电流曲线,是实现电池快速充电的有效方法。采用容量梯度法确定恒流充电终止标准参数,减小阶梯恒流充电电流下降梯度,并辅以电池温度过高则停止充电的保护控制,可实现动力电池的智能化快速充电控制。
首先,分段恒流充电智能化控制技术的阶段恒流充电终止标准采用容量梯度法,即采用容量梯度参数 dU / dC 作为阶段恒流充电终止判断标准。按该型电池恒流充电特性曲线确定充电终止容量梯度参数,充电过程中控制器以设定的频度对充电电压进行采样,计算I ( n) 下的容量梯度值,并与设定的充电终止容量梯度标准进行比较,根据比较结果判断是否终止当前阶段恒流充电。
其次,分段恒流充电智能化控制技术通过减小各段恒流值下降梯度(分段数增加),可使实际充电电流曲线更接近充电可接受电流曲线。通过试验确定该型电池初次恒流值I(1),并减小阶段恒流充电的电流下降幅度。如果降低充电电流后,达到充电终止容量梯度值的时间很短 (设定一个最小充电时间),则适当增大电流下降的幅度。分段恒流充电电流曲线如图(4)所示。
最后,分段恒流充电智能化控制技术的充电安全保障控制参数设为电池温度。设置电池最高温度限定值,在充电过程中,如果电池温度达到了限定值,立即停止充电。当电池温度降至正常温度时,适当减小充电电流继续充电,直到该段恒流充电结束,从而起到保障充电安全的效果。
试验结果表明,智能化变脉冲充电技术和分段恒流充电智能化控制方法均可有效缩短充电时间,提高充电效率,延长电池使用寿命。
关键字:电动汽车 快速充电技术 脉冲充电
引用地址:电动汽车快速充电技术研究
智能化变脉冲充电技术基本原理:
变脉冲快速充电系统主要由整流器和功率转换器组成,如图(1)所示。
快速充电器根据实时检测到的电池组的端电压、充电电流、温度、动态内阻等信息,按照马斯充电定律,通过采用智能控制算法实施对充电电流脉冲宽度T1、间歇时间T2、放电电流脉冲T3的分段调节,以消除被充电电池组的电极化现象,使电池组时刻处于较佳的电流接受状态,提高充电速度和充电效率。具体控制过程是,首先用较宽的充电脉冲进行充电,蓄电池的端电压上升,当到达充电时间T1时,充电器暂停充电,当充电间歇时间达到T2时充电器继续充电,如此反复,如图(2)所示。
当电压上升到设定的电压值V1时,根据程序的设定,减小充电脉冲占空比,并给蓄电池充电,当电池端电压达到设定值V2时,充电器间歇暂停充电;根据反馈电压自动调节输出脉冲的占空比,经过短时间停止充电,蓄电池的极化电压迅速下降,如此反复循环,直至达到蓄电池组的充电终止电压V3。
该快速充电器首次实现了按照被充电电池的实际充电状态(电流、电压、温度、动态内阻等)对脉冲充电器充电脉冲实施智能化的实时调节,将充电器和被充电电池上升为一个系统问题综合考虑,通过引入智能化调节算法,使该充电器具有更广泛的适用性。
分段恒流充电智能化控制技术基本原理:
分段恒流充电智能化控制电路如图(3)所示。该电路采用 CPU 控制,可对充电电池和充电环境温度进行检测,对电池充电进行计时,采用充电过程中电池的电压和电流,对分段恒流充电过程进行控制。
分段恒流充电使电池的实际充电电流曲线接近充电可接受电流曲线,是实现电池快速充电的有效方法。采用容量梯度法确定恒流充电终止标准参数,减小阶梯恒流充电电流下降梯度,并辅以电池温度过高则停止充电的保护控制,可实现动力电池的智能化快速充电控制。
首先,分段恒流充电智能化控制技术的阶段恒流充电终止标准采用容量梯度法,即采用容量梯度参数 dU / dC 作为阶段恒流充电终止判断标准。按该型电池恒流充电特性曲线确定充电终止容量梯度参数,充电过程中控制器以设定的频度对充电电压进行采样,计算I ( n) 下的容量梯度值,并与设定的充电终止容量梯度标准进行比较,根据比较结果判断是否终止当前阶段恒流充电。
其次,分段恒流充电智能化控制技术通过减小各段恒流值下降梯度(分段数增加),可使实际充电电流曲线更接近充电可接受电流曲线。通过试验确定该型电池初次恒流值I(1),并减小阶段恒流充电的电流下降幅度。如果降低充电电流后,达到充电终止容量梯度值的时间很短 (设定一个最小充电时间),则适当增大电流下降的幅度。分段恒流充电电流曲线如图(4)所示。
最后,分段恒流充电智能化控制技术的充电安全保障控制参数设为电池温度。设置电池最高温度限定值,在充电过程中,如果电池温度达到了限定值,立即停止充电。当电池温度降至正常温度时,适当减小充电电流继续充电,直到该段恒流充电结束,从而起到保障充电安全的效果。
试验结果表明,智能化变脉冲充电技术和分段恒流充电智能化控制方法均可有效缩短充电时间,提高充电效率,延长电池使用寿命。
上一篇:剖析PPTC器件在汽车电子中的五类应用
下一篇:高亮度LED在汽车照明应用中的关键问题
推荐阅读最新更新时间:2024-05-02 22:09
电动汽车在跑高速时耗电很快是何原因呢?
电动汽车跑高速时耗电快,给驾驶员的直观印象是——跑高速时SOC明显比城市道路行驶掉得快。 造成这一现象的原因是多种因素叠加的,主要影响因素有: 高速行车整车阻力迅速上升,所以维持高速行驶消耗的电量迅速上升; 高速行车时,整车阻力大,对应电池放电功率也大,电池本身的化学特性导致SOC下降速度加快; 还有一个重要的原因,高速行驶时电机效率降低,进一步恶化整车能耗。 车速增大时造成阻力迅速上涨的大头是风阻。车辆的空气阻力(风阻)与车速的平方成正比。也就是说汽车的行驶速度越快。汽车的风阻以二次曲线的形式增长。 整车阻力迅速增大就需要电池出更多功率去维持车辆的高车速,即高速时增加了电耗。 在电动汽车的电池身上,电池有放电功率(放
[嵌入式]
电动汽车用蓄电池简介
汽车工业的迅速发展,推动了全球机械、能源等工业的进步以及经济、交通等方面的发展,同时也极大的方便了人们的生活。但是,传统的内燃机汽车所固有的消耗能源、污染环境的缺陷也一直影响和困挠着人们的生活及社会的发展,随着社会的进步和科技的发展,随着保护环境、节约资源的呼声日益高涨,新一代电动汽车作为无污染、能源可多样化配置的新型交通工具,近些年来引起了人们的普遍关注并得到了极大的发展。北京要把2008年奥运会办成一届绿色的奥运会,其中的一项工作就是要用环保型的电动汽车来替代目前的内燃机汽车。 电动汽车以电力驱动,行驶无排放(或低排放),噪音低,能量转化效率比内燃机汽车高很多,同时电动汽车还具有结构简单、运行费用低等优点,安全性也优于内燃机汽
[嵌入式]
2016新能源汽车销量Top 20,比亚迪这优势也没谁了
据获悉,根据乘联会厂家销售数据,2016年全年共销售新能源乘用车32.42万台,同比增长84%。其中纯电动乘用车累计销售24.38万台,占比75.2%,增长116%;插电式混合动力乘用车累计销售 8.04万台,占比24.8%,增长26%。 从销量走势来看,2014-2016年销量走势基本保持了一致,但2016年12月新能源乘用车呈现同比增速偏低和环比走稳的特征,销售37999台,同比2015年12月的37137台增长2%,增速为历史最低。 从2016年新能源乘用车销量排行榜可以看出, 比亚迪 唐夺得2016年销量冠军,销售突破3万台,销售了31405台,远超其他车型的销量;比亚迪秦排在第二位,2016年
[嵌入式]
电动汽车高压线束设计过程及规范
一、范围 本规范规定了电动汽车高压线束设计过程中涉及到的符号、代号、术语及其定义,设计准则,布置要求,结构设计要求,材料选用要求,性能设计要求,设计计算方法,安全使用要求等。 二、规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.17 电工电子产品基本环境试验规程-盐雾试验 GB 4208 外壳防护等级(IP代码) GB/T 12528-2008 交流额定电压3kv及以下轨道交通车用电缆 GB 14315 电力电缆导体用压接型铜、铝接线端子和连接管 GB/T 14691 技术制图 字
[嵌入式]
未来电动汽车充电方式哪个最有潜力?
和传统燃油车离不开加油站一样,新能源汽车的发展离不开能源基础设施的支持,目前电动汽车能源补充大致可分为三个方向:插电、换电和无线。 插电式充电是指充电桩充电,主要分为快充和慢充两种技术路线;换电则是指直接更换电动汽车动力电池进行能源补充,主要有整体换装和分组换装两种形式;无线充电则是指在不与电源直接接触的情况下,对车辆进行充电。随着科技的快速发展,这三种能源补充方式谁才会是这个行业的老大呢? 电动汽车能源补充基础设施发展现状 就现阶段而言,电动汽车主要还是依靠充电桩进行能源补充,据中国电动汽车充电基础设施促进联盟(充电联盟)统计,截至2017年底,全国充电桩数量达45万个,公共充电设施已基本完成新国标升级,公共充电桩2
[嵌入式]
电动汽车自燃 动力电池PACK工艺水平待提高
如今,大街上的电动汽车数量越来越多,让人感受到了电动汽车产业的蓬勃发展。电动汽车最让人津津乐道的,是它具有低碳环保、启动快、节能等优点,而且运行平稳,没有汽油味和发动机轰响的声音,乘车感觉比燃油汽车更加舒适。不过,近年来全国各地发生的多起电动汽车自燃事件,引起了人们对电动汽车的安全性的质疑。 2011年4月,杭州武林路上一辆纯电动出租车突然发生自燃,无人员伤亡。经过调查之后,当地部门认为事故并非因电池单体设计、制造方面存在质量问题,而是电池成组后不能完全满足车辆使用环境的需求,在应用过程中,出现了电池漏液、绝缘受损以及局部短路的情况,从而引发事故。 2011年4月,杭州武林路一辆电动出租车突然当街“发火”。 20
[汽车电子]
一种电动汽车非车载充电机充电模块的研制
0 引言 电动汽车作为一种新型交通工具,在缓解能源危机、促进环境与人类和谐发展等方面具有很大的优势。大力发展电动汽车,可以优化能源供应结构,有效地减少中国对石油资源的依赖,保证中国经济发展中的能源安全,是解决能源战略安全问题的重要措施,也是确保经济、社会可持续发展的必然选择。 电动汽车充电设施建设是电动汽车产业健康发展的前提和基础。 2010 年 2 月国家电网公司发布了《国家电网智能化规划总报告》,对电动汽车充电设施建设提出了明确的规划:到 2015 年,国家电网公司将累计建设 4000 座电动汽车充电站;到 2020 年,国家电网公司将累计建设 10000 座电动汽车充电站。一个完
[汽车电子]
- 热门资源推荐
- 热门放大器推荐