固定阈值在超声波测距车载应用中的使用

发布者:EtherealEssence最新更新时间:2012-09-11 来源: 21IC 关键字:固定阈值  超声波测距  车载应用 手机看文章 扫描二维码
随时随地手机看文章

在超声波测距车载应用中,例如:超声波泊车辅助 (UPA) 和盲点探测 (BSD) 等,系统发射的超声波被周围物体反射回来。系统接收反射波(回波),然后将物体的回波振幅与某个阈值比较,从而实现探测物体的目的。物体越靠近系统,其回波也越强。因此,阈值随时间而变化,是一种相对常见的情况。本文将向您论述,该阈值无需变化,可以保持固定不变。

超声波测距

小轿车中使用的高级驾驶员辅助系统 (ADAS) 便是一种超声波测距应用。安装在车载前后保险杠和后视镜上的超声波传感器发射出超声波,然后接收周围物体反射回来的超声波。超声波的传播时间(飞行时间)用于计算到物体的距离,从而帮助驾驶员泊车:寻找泊车点,或者探测驾驶员盲点区域内的物体。车载前后保险杠安装的传感器达到 4 个之多,另外,每个后视镜上还各装有一个传感器。

在超声波高级驾驶员辅助系统中,压电式传感器一般用于将电信号转换为超声波,然后再把反射回来的超声波转换为电信号。接受反射回波时,压电式超声波传感器的低接收机灵敏度通常会导致电信号非常微弱。

图 1 显示了用于处理回波电压的典型信号链。TI PGA450-Q1 是一款集成车载超声波传感器信号调节器,适用于 UPA 系统等应用。

 

 

图 1 使用回波处理探测物体的 ADAS

超声波接收机接收到的回波信号s(t)被噪声破坏。图 1 所示输入相关噪声η(t)为外部环境噪声和所有信号链组成部分的和,其与时间(t)相关。被破坏的信号 u(t) 经由放大器使用增益 K 放大,然后通过一个模数转换器 (ADC) 被数字化。数字化的 AM 信号经过一个带通滤波器 (BPF) 按线路传输。该滤波器主要用于改善信号的信噪比。把经滤波后的信号 y(t) 与阈值 L 比较,以探测某个物体的存在。BPF 的后面一般会有一个振幅解调器,其将信号转换为基带,以进行比较。但是,本文为了方便说明,我们忽略了这种解调器。因此,探测物体的关键是阈值 (L) 的选择。那么,我们如何选择 L 呢?

回波振幅

发射器产生的超声波为一系列载波频率下的正弦波脉冲,并以声压级 (SPL) 来描述。SPL 的计算方法如下:

其中,Prms 为 RMS 声压,而 pref 为基准声压。常用基准声压为 20 µPa,即 0.0002 µbar。

传感器对某个物体产生的超声波 SPL,取决于物体到传感器的距离。特别需要请注意的是,声压同距离成反比例关系:

其中,p 为声波压力,而 d 为物体到传感器的距离。超声波传感器规范说明了30cm 距离的 SPL。由该值,利用这一距离定律,我们便可以计算出任意距离 x的 SPL:

其中,x 为传感器和物体之间的距离,并且 x > 30 cm。因此,x 距离的 SPL 为:

也就是说,超声波从传感器传播到物体过程中,会损失声压。

声波从物体反射回来,返回到传感器,声压进一步损失。另外,由于空气和物体都会吸收一部分声压,所接收回波的 SPL 可以通过方程式 3 进行近似计算。具体方程式请见本页末尾处,方程式中 α 为空气吸收系数。请注意,空气吸收的 SPL 与声波在空气中传播的距离与正比。换句话说,SPL 损失与 x 成正比。我们使用因数 2,是因为声波在传感器和物体之间传播两次—一次从传感器到物体,一次从物体到传感器。根据方程式 1,传感器接收的回波脉冲的声压计算方法如下:

超声波接收机将接收到的声波转换为电信号。转换过程受到接收机灵敏度 (dB)的影响。1 µPa 声压产生 10 V 时,接收机灵敏度为 0 dB。因此,利用方程式 5和 6,可以把以 dB 表示的接收机灵敏度转换为 V/µPa。[page]

其中,γ 为以 V/µPa为单位的接收机灵敏度。方程式 5 可以重写为:

我们可以将方程式 4、5 和 6 组合为方程式 7(见本页末尾),以计算超声波接收机产生的电压。方程式 7 可以简写为:

其中,增益(K)为一个常量。

方程式 8 表明,随着物体到传感器的距离 x 增加,回波电压下降。换句话说,物体越靠近,回波振幅变大,而物体远离时,回波振幅变小。

图 2 表明,接收到的电压与物体到传感器的距离有关,假设参数取值情况如下:

30cm 距离时发射 SPL= 106 dB

l 空气吸收=1.3 dB/m

l 物体吸收=0 dB

l 接收机灵敏度=–85 dB

 


 

图 2 接收机电压为物体到传感器距离的函数

可变阈值方案

前一小节表明,从物体接收到的回波的振幅,会随物体到传感器的距离增加而减小。另外,由图1我们知道,回波处理路径的输入信号为u(t) = s(t) + η(t),其中s(t)为回波信号,而η(t)为输入相关噪声。换句话说,回波信号振幅不仅随距离增加而减小,并且会被噪声破坏,而回波处理系统只能通过处理回波信号来探测某个物体的存在。选择阈值时,一种常用的方法是阈值方案。使用这种方法时,阈值随时间而变化。特别是,超声波刚被发射出来时,阈值较大,之后,随着经过时间的增加而减小。这种方法的基本原理是,利用信号振幅的可预测衰变,确定阈值大小:越靠近物体,回波和阈值越大,从而实现物体探测。离物体越远,回波和阈值就越小。

图3描述了可变阈值方法的概念。该图显示了不同距离时物体回波解调举例。TI PGA450-Q1 评估模块的一个测试装置用于收集波形数据。该图显示了一种可能的阈值方案。

 

 

图 3 一个可能阈值方案的解调回波信号波形

尽管这种可变阈值方案方法原则上有效,但它存在两个缺点:

1、 可变阈值方案要求器件内部有存储器,以将时间与阈值关系存储至方案表中。如果阈值有 3 个可能的取值(如图 3 所示),则该表就会有 6 种可能的输入。另外,对于车载中使用的高级驾驶员辅助系统 (ADAS) 来说,用户需要输入多种可能的传感器安装位置,因为传感器可以安装于车载保险杠或者后视镜上任何位置。例如,如果一个传感器有 10 个可能的安装位置,那么器件就需要存储多达 60 个位置数据。这就增加了器件的成本,因为要求使用更多的存储空间。

2、 在车载保险杠和反视镜上安装好传感器后,系统制造厂商会“校准”方案表。校准过程就是确定各个阈值,以及切换阈值的时间。这种校准通常是一项耗时费钱的工作,特别是一个表中需要多个输入数据时更是这样。

总之,可变阈值方案的主要缺点是,它增加了超声波测距系统的总成本。

固定阈值

可变阈值方法使用基于时间变化的阈值,与这种方法不的同是,固定阈值方法将信号噪声用作基线。系统噪声用于确定阈值,这样物体不存在就不对其进行探测。[page]

另外,由图 1 我们知道,回波处理路径输入信号为 u(t) = s(t) + η(t)。回波信号是一系列载波频率 fc(t) 下的正弦波脉冲,其计算方法如下:

其中,S 为回波信号振幅。因此,方程式 10 给出了放大信号的 RMS 值:

请注意,这种一连串的脉冲仅短暂出现,从而让信号振幅看似受到长时间调制。

带通滤波器 (BPF) 的y (t) 输出可以表示为:

其中,ƒ(BPF) 为 BPF 的数字滤波器函数,而ƒ(ADC) 为 ADC 的量化函数。假设回波信号的基准时间为 t0 = 0(通常为发射器发射超声波的时间),则 y(t) < L、tend < t < tobject 和 y(tobject) ≥ L,并且 tend 大于零且为所发射脉冲初始脉冲群的末尾时,则可以声明 tobject 时探测到物体的存在。问题是,“我们可以选择使用一个固定阈值,弃用可变阈值方案吗?”要回答这个问题,我们可以利用方程式12,并假设t为一个瞬间值,从而照顾到各个噪声组成部分:

变量定义如下:

K=放大器增益

ηext(t)=外部噪声

ηamp(t)=放大器噪声

ηADC(t) = ADC电路噪声

q(t) = ADC量化

ηBPF(t) =BPF计算数学误差

各个噪声组成部分彼此不相关。另外,我们假设每个噪声组成部分为零平均值和非零方差高斯。

把方程式9和12代入方程式11后,BPF输出变为:

根据方程式9,BPF噪声的RMS为:


其中,Q 为 BPF 的品质因数,fs 为 ADC 采样频率,而所有噪声项均为 RMS值。知道方程式 14 所表示噪声的 RMS,并假设 6.6 波峰因数的情况下,所选阈值为:

上述方程式可以表示为:

换句话说,我们可以利用方程式 15 选择固定阈值。图 4 显示了使用固定阈值的举例回波响应。

 

图 4 使用固定阈值处理回波数据

使用这种方法的一个明显优点是,它仅需要存储一个输入数据。如果一个传感器有 10 个可能的安装位置,只需总共存储 10 个输入数据便可。相比前面介绍的可变阈值方法,存储空间需求减少了 6 倍。请注意,如果放大器增益 (K) 改变,方程式 15 同样也提供了一种调节阈值的机制。

方程式 15 提供了一种确定阈值大小的分析方法。一般而言,需要利用噪声分析确定阈值大小。进行噪声分析的一种替代方法是,使用一个阈值对车载上安装的传感器进行校准。可将物体放置到传感器规定测距范围的最远处,然后完成测距校准。所选择的阈值需足够大,以在没有物体时超过处理后信号的噪声值,并确保仅在有物体时信号能够穿过该阈值。请注意,在使用这种方法选择阈值时,也应考虑 BPF 衰减。最后,为了提高物体探测系统的稳健性,信号的振幅必须在某段时间大于固定阈值。

关键字:固定阈值  超声波测距  车载应用 引用地址:固定阈值在超声波测距车载应用中的使用

上一篇:解析Hall加速度传感器在测量汽车横纵加速度的原理
下一篇:DiBcom推出针对汽车音响系统的信号接收芯片

推荐阅读最新更新时间:2024-05-02 22:19

BlackBerry与AWS携手推出为车载应用打造的安全智能互联汽车软件平台
2020年1月9日 - BlackBerry (纽交所股票代码:BB;多伦多证券交易所股票代码:BB)近日宣布与AWS(亚马逊网络服务公司)合作,共同推出用于车载应用的互联汽车软件平台。该平台将BlackBerry QNX实时操作系统的功能安全性和网络安全性与AWS云端和车载物联网服务相结合,能够助力汽车制造商从车辆传感器中安全地获取数据,开发出面向互联、电动和自动驾驶汽车的软件应用和机器学习模型。 借助由AWS提供支持的BlackBerry平台,汽车OEM厂商能够更快地实现他们的愿景,不断将创新的互联汽车服务迅速推向市场,包括驾驶舱的个性化、汽车声学系统调节、车况监测以及高级辅助驾驶系统(ADAS)等。汽车公司还可以利用该
[汽车电子]
BlackBerry与AWS携手推出为<font color='red'>车载</font><font color='red'>应用</font>打造的安全智能互联汽车软件平台
51单片机 超声波测距组件
/** * 超声波测距组件 * 文件名:ultrasonic.h */ #ifndef _ULTRASONIC_H #define _ULTRASONIC_H #define somenop(); { _nop_();_nop_();_nop_();_nop_();_nop_(); _nop_();_nop_();_nop_();_nop_();_nop_(); } sbit TX = P1^0; //发射引脚 sbit RX = P1^1; //接收引脚 void tmr1_specialInit(); uint8_t ult_getDis(); #endif // _ULTRASONI
[单片机]
STC15单片机使用HC-SR04超声波测距模块
【HC-SR04】 HC-HR04超声波测距可提供2cm-400cm的非接触式距离感测功能,测距精度可达3mm。 基本工作原理 1、采用IO口TRIG触发测距,给最少10us的高电平信呈。 2、模块自动发送8个40KHz的方波,自动检测是否有信号返回。 3、有信号返回,通过IO口ECHO输出一个高电平,高电平持续时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340m/s))/2. 时序图 以上时序图表明你只需要提供一个10uS以上脉冲触发信号,该模块内部将:发出8个40kHz周期电平并检测回波。一.旦检测到有回波信号则输出回响信号。回响信号的脉冲宽度与所测的距离成正比。由此通过发射信号
[单片机]
STC15单片机使用HC-SR04<font color='red'>超声波测距</font>模块
基于CANopen协议在车载设备中的应用研究
引言 在现代战争中,随着武器装备系统的机动化、自动化和信息化程度的不断提高,军用车辆上的车载设备也不断增多,其中很多设备如车载雷达、车载 光学 瞄准设备、车载武器设备等,都需要一个稳定的水平平台作为基座,以保证武器系统的瞄准、跟踪和精确打击。同时,随着网络技术的不断发展,车辆系统中的网络化程度也越来越高,这就要求一个车载装置能和其它的设备进行互连,从而有利于形成整车 监控 系统。目前,在车辆中大多数设备都通过 CAN 总线进行连接,但是其应用层协议的不统一给不同厂商之间的设备互连带来了困难。 CANopen 是基于CAN(Controller Area Network)总线的应用层协议,它最初由从事工业控制的CiA (CA
[汽车电子]
基于CANopen协议在<font color='red'>车载</font>设备中的<font color='red'>应用</font>研究
汽车系统安全组件在车载网络通信架构的应用
新一代智能汽车架构的核心目标之一是能够支撑高阶自动驾驶的功能安全。在实现目标的手段中,“冗余”仍是最重要的保障手段之一。 除了要保障感知、计算、执行、供电等环节的冗余外,从整车架构层面,通信是功能安全实现的关键环节,以灵活、有限的代价来保障“通信”的冗余,保证终端设备的故障不会影响整个网络,以及网络具备故障后快速恢复等的基本能力,是保障各个控制器能够准确、及时地控制整车安全运行的基础。在此基础上设计的汽车系统安全组件如图所示。 对通信的功能安全需遵循E2E(End to End,端到端)的理念,无论从系统功能安全的角度还是从软件功能安全的角度,接入分布化及计算集中化对车载网络通信提出了很高的要求。下图分别从系统功能安全及软件功
[嵌入式]
汽车系统安全组件在<font color='red'>车载</font>网络通信架构的<font color='red'>应用</font>
超声波模块测距51程序_单片机超声波测距c语言
超声波检测原理 超声波测距的程序流程图 程序如下: //超声波模块程序 //超声波模块程序 //Trig = P2^0 //Echo = P3^2 #include #define uchar unsigned char #define uint unsigned int // void delay(uint z) { uint x,y; for(x=z;x 0;x--) for(y=110;y 0;y--); } // void delay_20us() { uchar a ; for(a=0;a } //**********************************************************
[单片机]
超声波模块测距51程序_单片机<font color='red'>超声波测距</font>c语言
51单片机设计的超声波测距
  一、设计要求   设计一个超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量范围在0.10-3.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。   二、设计思路    超声波传感器及其测距原理    超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声
[单片机]
51单片机设计的<font color='red'>超声波测距</font>器
用AT89C2051设计超声波测距
    摘要: 本文介绍了AT89C2051单片机的性能和特点,并在分析了超声波测距原理的基本上,指出了设计测距仪的思路和所需考虑的问题,给出了实现超声波测距方案的软、硬件设计系统框图。该设计系统经校正后,其测量精度可达0.1米。     关键词: 超声波  换能器  测距  AT89C2051     超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如:液位、井深、管道长度等场合。目前国内一般使用专用集成电路设计超声波测距仪,但是专用集成电路的成本很高,并且没有显示,操作使用很不方便。本文介绍一种以AT89C2051或GSM97C2051单片机为核心的低成本、高精度、微型化数字显示超声波
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved