提高RS-485总线可靠性的几种方法及常见故障处理

发布者:雅致书香最新更新时间:2012-12-29 来源: 21IC 关键字:RS-485总线  网络节点  强电磁 手机看文章 扫描二维码
随时随地手机看文章
  在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。
  
  一、RS-485接口电路的硬件设计
  
  1、总线匹配
  
  总线匹配有两种方法,一种是加匹配电阻,如图1a所示。位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。
  
  
  另外一种比较省电的匹配方案是RC 匹配(图2 )利用一只电容C 隔断直流成分,可以节省大部分功率,但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。除上述两种外还有一种采用二极管的匹配方案(图3),这种方案虽未实现真正的匹配,但它利用二极管的钳位作用,迅速削弱反射信号达到改善信号质量的目的,节能效果显著。
  
  

 
  
  2、RO及DI端配置上拉电阻
  
  异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。为防止干扰信号误触发RO(接收器输出)产生负跳变,使接收端MCU进入接收状态,建议RO外接10kΩ上拉电阻。
  
  3、保证系统上电时的RS-485芯片处于接收输入状态
  
  对于收发控制端TC建议采用MCU引脚通过反相器进行控制,不宜采用MCU引脚直接进行控制,以防止MCU上电时对总线的干扰,如图4所示。

  4、总线隔离
  
  RS-485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口VA、VB与总线之间应加以隔离。通常在VA、VB与总线之间各串接一只4~10Ω的PTC电阻,同时与地之间各跨接5V的TVS二极管,以消除线路浪涌干扰。如没有PTC电阻和TVS二极管,可用普通电阻和稳压管代替。
  
  5、合理选用芯片
  
  例如,对外置设备为防止强电磁(雷电)冲击,建议选用TI的75LBC184等防雷击芯片,对节点数要求较多的可选用SIPEX的SP485R。
  
  二、RS-485网络配置
  

  1、网络节点数
  
  网络节点数与所选RS-485芯片驱动能力和接收器的输入阻抗有关,如75LBC184标称最大值为64点,SP485R标称最大值为400点。实际使用时,因线缆长度、线径、网络分布、传输速率不同,实际节点数均达不到理论值。例如75LBC184运用在500m分布的RS-485网络上节点数超过50或速率大于9.6kb/s时,工作可靠性明显下降。通常推荐节点数按RS-485芯片最大值的70%选取,传输速率在1200~9600b/s之间选取。通信距离1km以内,从通信效率、节点数、通信距离等综合考虑选用4800b/s最佳。通信距离1km以上时,应考虑通过增加中继模块或降低速率的方法提高数据传输可靠性。[page]
  
  2、节点与主干距离
  
  理论上讲,RS-485节点与主干之间距离(T头,也称引出线)越短越好。T头小于10m的节点采用T型,连接对网络匹配并无太大影响,可放心使用,但对于节点间距非常小(小于1m,如LED模块组合屏)应采用星型连接,若采用T型或串珠型连接就不能正常工作。RS-485是一种半双工结构通信总线,大多用于一对多点的通信系统,因此主机(PC)应置于一端,不要置于中间而形成主干的T型分布。

  三、提高RS-485通信效率
  
  RS-485通常应用于一对多点的主从应答式通信系统中,相对于RS-232等全双工总线效率低了许多,因此选用合适的通信协议及控制方式非常重要。
  
  1、总线稳态控制(握手信号)
  
  大多数使用者选择在数据发送前1ms将收发控制端TC置成高电平,使总线进入稳定的发送状态后才发送数据;数据发送完毕再延迟1ms后置TC端成低电平,使可靠发送完毕后才转入接收状态。据笔者使用TC端的延时有4个机器周期已满足要求;   

  2、为保证数据传输质量,对每个字节进行校验的同时,应尽量减少特征字和校验字
  
  惯用的数据包格式由引导码、长度码、地址码、命令码、数据、校验码、尾码组成,每个数据包长度达20~30字节。在RS-485系统中这样的协议不太简练。推荐用户使用MODBUS协议,该协议已广泛应用于水利、水文、电力等行业设备及系统的国际标准中。
  
  四、RS-485接口电路的电源、接地
  
  对于由MCU结合RS-485微系统组建的测控网络,应优先采用各微系统独立供电方案,最好不要采用一台大电源给微系统并联供电,同时电源线(交直流)不能与RS -485信号线共用同一股多芯电缆。RS-485信号线宜选用截面积0.75mm2以上双绞线而不是平直线。对于每个小容量直流电源选用线性电源LM7805比选用开关电源更合适。当然应注意LM7805的保护:
  
  1、LM7805输入端与地应跨接220~1000μF电解电容;
  
  2、LM7805输入端与输出端反接1N4007二极管;
  
  3、LM7805输出端与地应跨接470~1000μF电解电容和104pF独石电容并反接1N4007二极管;
  
  4、输入电压以8~10V为佳,最大允许范围为6.5~24V。可选用TI的PT5100替代LM7805,以实现9~38V的超宽电压输入。
  
  五、光电隔离
  
  在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。虽然RS-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无法正常工作了,严重时甚至会烧毁芯片和仪器设备。
  
  解决此类问题的方法是通过DC-DC将系统电源和RS-485收发器的电源隔离;通过光耦将信号隔离,彻底消除共模电压的影响。实现此方案的途径可分为:
  
  1、用光耦、带隔离的DC-DC、RS-485芯片构筑电路;
  
  2、使用二次集成芯片,如PS1480、MAX1480等。
  
  六、RS-485系统的常见故障及处理方法
  
  RS-485是一种低成本、易操作的通信系统,但是稳定性弱同时相互牵制性强,通常有一个节点出现故障会导致系统整体或局部的瘫痪,而且又难以判断。故向读者介绍一些维护RS-485的常用方法。
  
  1、若出现系统完全瘫痪,大多因为某节点芯片的VA、VB对电源击穿,使用万用表测VA、VB间差模电压为零,而对地的共模电压大于3V,此时可通过测共模电压大小来排查,共模电压越大说明离故障点越近,反之越远;
  
  2、总线连续几个节点不能正常工作。一般是由其中的一个节点故障导致的。一个节点故障会导致邻近的2~3个节点(一般为后续)无法通信,因此将其逐一与总线脱离,如某节点脱离后总线能恢复正常,说明该节点故障;
  
  3、集中供电的RS-485系统在上电时常常出现部分节点不正常,但每次又不完全一样。这是由于对RS-485的收发控制端TC设计不合理,造成微系统上电时节点收发状态混乱从而导致总线堵塞。改进的方法是将各微系统加装电源开关然后分别上电;
  
  4、系统基本正常但偶尔会出现通信失败。一般是由于网络施工不合理导致系统可靠性处于临界状态,最好改变走线或增加中继模块。应急方法之一是将出现失败的节点更换成性能更优异的芯片;
  
  5、因MCU故障导致TC端处于长发状态而将总线拉死一片。提醒读者不要忘记对TC端的检查。尽管RS-485规定差模电压大于200mV即能正常工作。但实际测量:一个运行良好的系统其差模电压一般在1.2V左右(因网络分布、速率的差异有可能使差模电压在0.8~1.5V范围内)。

关键字:RS-485总线  网络节点  强电磁 引用地址:提高RS-485总线可靠性的几种方法及常见故障处理

上一篇:航天测控:LXI总线技术及其应用
下一篇:CAN总线与RS-485总线的通信接口设计

推荐阅读最新更新时间:2024-05-02 22:29

无线传感器网络节点硬件的模块化设计
  随着人们对于环境 监测 要求的不断提高,无线 传感器 网络 技术以其投资成本低、架设方便、可靠性高的性能优势得到了比较广泛的应用。由于无线传感器网络节点需要实现采集、处理、通信等多个功能,因此硬件上采用模块化设计可以大大提高网络节点的稳定性和安全性。 1 CC2430芯片简介   CC2430是一款工作在2.4 GHz免费频段上,支持 IEEE 802.15.4标准的无线收发芯片。该芯片具有很高的集成度,体积小功耗低。单个芯片上 整合 了 ZigBee 射频 (RF)前端、内存和微控制器。CC2430拥有1个8位MCU(8051),8 KB的RAM,32 KB、64 KB或128 KB的Flash,还包含模拟数字转换
[安防电子]
无线传感器<font color='red'>网络</font><font color='red'>节点</font>硬件的模块化设计
基于无线传感器网络的公交车载节点定位算法研究
WSN(Wireless Sensors Network)是集传感器技术、MEMS技术和网络技术于一体的一种信息获取和信息处理技术 ,它具有自组织、自适应能力,在智能交通方面具有独特的优点和广阔的应用前景 。 在智能公交系统中,车辆位置的准确求取和传递是其他系统功能实现的先决条件。当前已经有了一些利用无线传感器搭建智能公交系统的通信网络的方案 ,但这些方案均利用其他手段实现车辆的定位,鲜有利用无线传感器自身的TOF测距功能实现车辆定位功能。而利用基于TOF的无线传感器实现公交车载节点的定位可以降低系统建设和实用成本,对公交系统智能化改造具有参考意义。 在无线传感器定位算法中,由于Range-free定位算法要求大密度的参考
[嵌入式]
基于无线传感网络的太阳能LED路灯状态传感器节点的设计
随着太阳能LED路灯在城市照明系统中的广泛应用,如何节约能源、提高路灯能源的利用率己成为急需解决的问题。太阳能LED路灯涉及到光伏电池、LED灯头、蓄电池和路灯控制系统,能否最大效率地利用太阳能和延长LED灯头的使用寿命,是目前迫切需要解决的问题。ZigBee技术以其功耗低、通信可靠、网络容量大等特点为路灯自动控制领域提供了较合适的解决方案 。 本文研究了ZigBee技术及JN5139混合信号微控制器,从无线传感器网络的基本单位出发,采用照度传感器、温度传感器、直流电压传感器和电流传感器分别采集光伏电池电流电压、蓄电池电流电压、LED灯头温度和照度等数据,设计了基于JN5139模块的具有全功能设备(FFD)的灵活多变、性能优越的太
[嵌入式]
基于Modbus协议的智能压力传感器研发
1 引言   20世纪90年代以来,在传感技术基础上结合微处理器技术发展起来的智能能传感技术成为国际上研究的热点。传感器领域的智能化得到了快速发展,出现了不同种类的智能化传感器产品。但是,单一智能化传感器并不能充分发挥智能化的优点,只有将其与计算机联网才能真正将智能化传感器的特点全面发挥出来。本文根据 rs-485总线以差分平衡方式传输信号,具有抗干扰性好、传输距离远等特点,通过一对双绞线作为传输介质将现场设备与上位机连起来,使系统结构大为简化,同时这也大大降低了系统安装、调试以及维护的成本。通过目前国际上普遍采用的modbus通信协议进行编写,方便操作人员的阅读及使用。 2 modbus rtu通信协议
[单片机]
基于Modbus协议的智能压力传感器研发
认识RS-485收发器的临界总线电压
  RS-485凭借其稳健耐用性和高可靠性,已经成为世界范围内嘈杂工业环境中最常用的应用接口技术。随着越发宽泛的工作范围以及与更高抑制性能组合在一起的趋势催生了现代性能已经超过最初的RS-485标准 (EIA/TIA485)的收发器设计。   全新的收发器技术规格在组件数据表中给出了这些性能方面的提升,然而,这些技术规格经常被终端用户,即系统设计人员,错误地解读。例如,在对绝对最大额定值(AMR)部分与建议运行条件(ROC)下分别对给出的收发器最大电压电平进行比较时经常会出现混淆。   用户经常会问到这样的问题:在绝对最大额定值条件下,收发器能够可靠地发送数据吗?为什么ROC下的输入电压远远小于AMR中的值?共模电压范围
[嵌入式]
基于RS-485总线的计算机视频监控系统设计
  纵观视频监控技术的发展历史,它主要经历了三代:第一代,传统模拟视频监控系统;第二代,基于硬盘录像机的视频监视系统;第三代,基于信源压缩的数字视频监控系统。目前,第一代系统已经占主导地位,第二代系统刚切入市场,而第三代系统还处在刚刚起步的阶段。本文介绍的视频监控系统使用便携式图像压缩终端,在摄象机的视频输出端对图像信号进行采集、变换和编码,用一对双绞线按RS-485总线标准将压缩后的图像数传送给上位机。这样只要使用一根电缆就能构成一个64~128点的局域网,不但布线简单,而且传输速率高达1Mbps,远远超过电话网的传输速率。   RS-485总线采用平衡发送和差分接收方式实现通信:发送端将串行口的TTL电平信号转换成差分信号A,B
[嵌入式]
基于RS-485总线的计算机视频监控系统的研究
    摘要: 提出一种用RS-485总线构成视频监控系统的方法。系统用便携式视频压缩终端运载视频图像进行实时压缩,通过RS-485总线将压缩图像数据传送给主机。     关键词: 视频监控 RS-485总线 图像压缩 DSP芯片 RS-485总线抗干扰能力强,能实现多站远距离通信,组网方便,成本低廉,因而在工业控制领域得到广泛应用。随着串行通信接口芯片和RS-485接口芯片传输速度的大幅度提高,使得利用RS-485总线传输图像数据成为可能,但是未压缩视频图像的数据量极大,即使总线传输速度高达1Mbps,传输一幅512×512×8的灰度图像就要耗时2.1s,因此必须视频图像数据进行压缩编码,再通过总线传输。
[应用]
RS-485总线电路中的过热保护
  1 引言   在某物理层线路驱动电路的热关断(TSD)电路是作为过热保护电路。RS-485物理层电路的低阻抗输出驱动器需要TSD功能用于保护其免受故障或因使用不当而造成损坏。TSD电路的基本功能是检测器件结温(封装硅片温度)是否超过其允许值,并关断驱动器输出电路,以降低结温,使之返回其容许值。   TSD电路不应干扰器件的正常工作。具体地说,如果器件结温未超过推荐的工作条件,则不能启用TSD电路。在器件正常工作时启用TSD可能中断数据传输,这是由于TSD触发时低阻抗三态输出,驱动器关断。TSD电路通常与其他故障保护功能相配合。由于TSD触发对数据传输的破坏性,因此TSD电路是器件免受损坏的最后一道保护机制。   了
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved