什么是PCI Express 标准

发布者:HarmoniousSoul最新更新时间:2013-02-23 来源: eefocus 关键字:PCI总线  独立性  即插即用 手机看文章 扫描二维码
随时随地手机看文章

本白皮书主要着眼已经得到广泛采用的PCI 总线的成功优势所在,同时详细介绍下一代高性能I/O 互连技术PCI Express 它将作为标准的局域I/O 总线被广泛应用于未来各种计算机平台。本白皮书还将就PC 总线技术的演变历程、PCI Express 的物理层和软件层、PCI Express 所能带来的益处和竞争优势以及此项崭新技术在测量自动化系统领域里预示的令人振奋的深远意义,做个整体技术性概述。

PC 的演进历史 

上世纪90 年代初,PCI 总线一经推出,即统一了当时并存的多种I/O 总线,诸如VESA 局域总线,EISA,ISA 和微通道等等,如图1所示。它首先被用于实现芯片与芯片间互连并替代了不全面的 ISA 总线。在早期,33MHz PCI总线很好地满足了当时主流外设I/O 的带宽需要。然而现在情况发生了变化,处理器速度惊人地提高,以及处理器和内存的频率也不断 地攀升。在这一期间,PCI 总线的频率由33MHz 提高到66MHz, 而处理器的速度由33MHz 提高到3GHz 。一个具有新I/O 技术的总线设备如千兆以太网和 IEEE 1394B ,就可能占用几乎所有 PCI 总线带宽。

PCI 总线历史和概述 

和以前的总线相比,PCI 总线具有很多优势,其中最重要的是处理器的独立性,带缓冲的隔离,总线主控和真正的即插即用。带缓冲的隔离真正地实现了CPU 局域总线和 PCI 总线间在电路和时钟方面的隔离。这一特性能为系统性能带来两个主要好处。首先是 PCI 总线和CPU 总线可以工作在各自的时钟周期;第二是由于有独立的PCI 总线速度和负载,可单独提高CPU 局域总线的频率。通过总线主控,PCI 设备以仲裁处理方式访问 PCI 总线并且能直接控制总线处理业务,而不用等主CPU 为设备提供服务,从而使得整个I/O 处理业务的等待时间减少。即插即用操作,可以自动检测和配置设备,得到基本地址不再需要中断运行和手工设置开关跳线,而这些都曾使 ISA 板卡的用户感到很棘手。

PCI 面临的挑战 

出色的 PCI 已经享受到了成功的殊荣,而今开始面临一系列新的挑战,包括带宽的限制,主管脚数的限制,缺乏如同步数据传输这样的实时数据传输服务以及没有下一代I/O 所需的服务质量,以及电源管理和虚拟I/O 等问题。
自从PCI 推出以来,我们不断完善PCI 的各项规格,试图跟上日益增加的更高I/O 要求。各阶段具体革新总结如下表所示: 
对于PCI 和由其衍生的总线来说,协议开销和总线拓扑结构导致可使用的总线带宽要小于理论带宽。总线上的设备要共享可用带宽,这是PCI 主要的局限性。由于PCI 的时钟频率已不能满足某些应用的要求,由其衍生出来的其它一些总线,如PCI-X 和高级图像端口(AGP ),则通过提高总线频率来缓解带宽的压力。增加频率的副作用是总线连通距离和总线收发器可驱动连接器的数量也会相应缩短和减少,这样就导致了对PCI 总线的分割。每个片断都需要一个完整的 PCI-X 总线来连通主驱动芯片和所有功能插槽。例如,每一部分64 位的PCI-X 需要150 个管脚。很显然,要实现这样的连线,板层数和芯片封装引脚都会有很大的难度并且成本非常昂贵。这种额外的成本只有在对带宽有严格要求的情况下才有价值,如服务器。 

诸如数据采集,波形生成,包含音频和视频流的多媒体应用等需要保证带宽和有确定的等待时间,如果不能满足这一点,有经验的用户也会束手无措。原始的PCI 规范并没有考虑这些问题,这是因为在制定规范时上述应用并不普及。如今的同步数据传输,如高清晰度的无压缩视频和音频,要求I/O 系统包含同步传输功能。同步传输的另一个作用是:和典型的PCI 设备相比,局域 PCI Express 设备只用少得多的内存就能实现缓冲功能,从而把所使用的可变带宽降至最低。

最后,对下一代I/O 的要求如服务质量测量和电源管理等,能提高数据的完整性并允许有选择地关闭系统设备对于现代PC 不断增加的电源功率来说这是需要重点考虑的。虚拟通道允许数据通过虚拟路由来传送;即使其它通道被更重要的处理业务所阻塞,也一样能进行数据传输。

尽管 PCI 总线在某些方面已有些过时,但是转变到PCI Express 还要经过一个长期过程,并且未来许多年里PCI 总线将仍然是I/O 扩展的强有力竞争者。随着PCI Express 技术日益赢得认可和广泛采用,2004 年以及此后推出的新型PC 将会同时配有PCI 插槽和PCI Express 插槽。
PCI Express 构架 

如图 2 所示,即 PCI Express 的层次体系结构。它保持了与 PCI 寻址模式(加载-存储体系结构且具有单层地址空间)的兼容性,从而保证了所有现有的应用程序和驱动操作无需改变。PCI Express 配置使用的是PCI 即插即用标准中所定义的标准机制。软件层发出读和写请求,并使用基于数据包、分段传输的协议通过处理层传输至I/O 设备。

链路层向这些数据包添加序列号和循环冗余校验(CRC )从而创建了一个高度可靠的数据传输机制。基本的物理层包括两个单工通道,即传输对和接收对。这个传输对和接收对一起被称为一个信道。2.5 Gb/s 的初始速度提供了在每个PCI Express 信道上每个方向上大约250 MB/s 标准带宽。一旦考虑协议头,这其中大约200 MB/s 由设备用来传输数据。这一速率是大多数典型 PCI 设备的 2 番到 4 番。而且不同于 PCI 的是,只要总线带宽在设备之间共享,每一个设备都 具有此带宽。 [page]
物理层 

基本的PCI Express 链路包括两个低电压的AC 耦合差分信号对(一个传输对和一个接收对),如图3所示。物理链路层信号使用一个去加重(de-emphasis )策略来减少符号间干扰,从而提高了数据完整性。数据时钟通过使用 8b/10b 的解码策略来嵌入,从而到达极高的数据传输率。初始的信号发生频率是每个方向 2.5 Gb/s (生成1个信号) 而且它将会随着硅工艺的提高而增加至每个方向10 Gb/s(信号在铜线中传输可能实现的最大速率)。两个链路层的 PCI Express 代理在物理层上传输数据包。 
图3 PCI Express 物理连接图一个PCI Express 链路层的带宽可能通过增加信号对形成多个信道而线性增长。物理层提供 x1, x2, x4, x8, x12, x16 和x32 信道宽度,理论上它将输入的数据包在这些信道上分配。使用 8b/10b 编码方式,每一个字节在这些信道上传输。数据的分拆和整合对于其他层来说是透明的。在初始化阶段,每个PCI Express 链路通过链路两端代理的信道宽度的匹配和频率操作来建立。在这其中没有固件和操作系统软件的参与。PCI Express 体系结构提供了将来通过速度升级和高级编码技术所带来的性能提升。将来的速度、编码技术或者媒介仅仅会影响物理层。 

在PCI Express 中使用不同的信道宽度需要用户注意扩展板要求的带宽以及与母板提供的带宽相匹配。除了图形卡以外(通常是X16 ),许多早期的PCI Express 扩展板使用的 X1 的宽度。随着更高的带宽要求,越来越多的板卡将使用更宽的带宽。早期的PCI Express 计算机提供一个X16 的连接器以及一些X1 、X4 、X8 插槽的组合,这由计算机面向的客户所决定。PCI Express 允许在不匹配的信道宽度上进行一些交互操作,这取决于不匹配的方向。在一个较小宽度的连接器上使用更大宽度的扩展板卡是向下插入。例如,利用PCI ,您可以在一个32 位的插槽上插入一个64 位的PCI 板卡。

然而,在 PCI Express 中,向下插入在物理上被扩展板卡和连接器所阻止。另一中不匹配在一个较大的连接器上使用一个较小的扩展板卡是向上插入。向上插入是允许的,但是会受到限制在这种配置下,母板厂商需要支持仅在X1 数据率上的扩展板卡,从而浪费了在具有更快接口速率的扩展板卡上的投资。无论一个特定的母板在向上插入配置时能否在全速率时处理一个扩展板卡,都必须在每种情况下向母板生产商确认。例如,一些母板可以在一个X4 的扩展板卡插入一个X8 或X1 的插槽时,以全速率(X4 )进行处理,然而来自同一厂商的其他母板可能仅以X1 的速率运行。在一个母板既带有集成图形控制器(板载)又带有一个 X16 的 PCI Express 插槽以用于将来图形扩展的情况下,通常不可能在板载图形卡使能的同时使用那个 X16 的插槽。

数据链路层 

链路层的主要作用就是保证数据包在 PCI Express 链路上的可靠传输。链路层负责数据完整性并向处理层的数据包添加序列号和循环冗余校验,如图4所示。大部分数据包在处理层初始化。一个基于优先数的、流量控制的协议保证了数据包仅在另一端具有接收这个数据包的缓冲区情况下才能传输,这样就去除了任何数据包的请求以及由于资源限制而引起的总线带宽浪费。链路层会自动的重新收发一个被标记为损坏的数据包。
处理层 

处理层接收软件层的读和写请求,并创建请求数据包发送至链路层。所有的请求都被分段的处理而且一些请求包需要一个响应包。处理层也从链路层接收响应数据包并且将它与原先的软件请求相匹配。每一个数据包都具有一个唯一的标识,使得响应包能够指向正确的源。数据包的格式提供了32 位的存储地址和扩展的64 位地址。数据包也具有诸如“无侦听”、“灵活排序”“优先级”等属性,这可能用于将这些数据包在I/O 子系统中以最优的路径传输。 

处理层提供4 个地址空间3 个PCI 地址空间(内存、I/O 和配置)和消息空间。PCI 2.2 引入了另一种广播系统中断的方式称为消息信号中断(MSI )。作为PCI 2.2 系统中一种可选的性能, 这里使用了一种特殊格式的内存写处理替代硬连接的边带信号。PCI Express 技术指标重新使用了MSI 概念以作为一种主要的中断处理方式,并且使用了消息空间来接收所有的优先的边带信号来作为带内信号,例如中断、电源管理请求,和复位。其它PCI 2.2 技术指标中的“特殊周期”,例如中断确认,也被处理成带内消息。您可以将 PCI Express 消息视为“虚拟的线”,因为他们的作用是消除当前平台上所使用的各种边带信号。

软件层 

软件兼容性对于 PCI Express 是极为重要的。软件兼容性有两个方面初始化(或者列举)和运行时刻。PCI 具有一个功能强大的初始化模式,其中操作系统可以发现所有当前添加的硬件设备然后分配系统资源,例如内存、I/O 空间和中断,从而创建一个优化的系统环境。PCI 配置空间和I/O 设备可编程能力是PCI Express 体系结构中保持不变的重要概念。PCI 所使用的运行时刻软件模式是一个加载-存储、共享内存的模式,它在PCI Express 体系结构中得以保持以使得所有现有的软件能够无需改变即可执行。新的软件也可以利用一些PCI Express 最新的先进特性,例如高级开关(本文并未述及)。

关键字:PCI总线  独立性  即插即用 引用地址:什么是PCI Express 标准

上一篇:基于IMS的可视电话系统
下一篇:蓝牙与UWB融合开拓新的无线空间

推荐阅读最新更新时间:2024-05-02 22:34

基于DSP和PCI总线的通信数据采集系统
    摘要: 介绍一种基于DSP和PCI总线的移动通信数据采集系统。提出了一种双映射方式,成功地解决了DSP的主机通信接口(host port interface,简称HPI口)和PCI9052之间的通信连接。     关键词: 数字信号处理器 数据采集 PCI总线 随着移动通信突飞猛进的发展,移动通信的数据业务量急剧上升,监控大容量的移动数据业务成了电信运营商刻不容缓的需求。而移动通信数据的传输一般都是基于E1链路。因此从E1链路上采集通信数据成了移动数据业务监控最基础的一部分。 数字信号处理器能够高速地处理数据并具有强大的数字吞吐能力,在数据采集领域获得了广播的应用。而PCI总线也因为极高
[工业控制]
基于FPGA的PCI总线接口设计
摘 要:PCI是一种高性能的局部总线规范,可实现各种功能标准的PCI总线卡。本文简要介绍了PCI总线的特点、信号与命令,提出了一种利用高速FPGA实现PCI总线接口的设计方案。 关键词:PCI总线;信号;命令;协议 ---在现代数据采集及处理系统中,ISA、EISA、MCA等扩展总线已无法适应高速数据传输的要求,而PCI局部总线以其优异性价比和适应性成为大多数系统的主流总线。 PCI总线特点 ---PCI总线宽度32位,可升级到64位;最高工作频率33MHz,支持猝发工作方式,使传输速度更高;低随机访问延迟(对从总线上的主控寄存器到从属寄存器的写访问延迟为60ns);处理器/内存子系统能力完全一致;隐含的中央仲裁器;多路复
[应用]
基于CPCI总线的FPGA加载设计
  0 引言   由于具有极强的实时性和并行处理能力,FPGA芯片在无线通信、信号处理等领域得到了广泛应用。   作为一种半定制电路,FPGA 的使用非常灵活,对于同一片FPGA,通过加载不同的编程数据可以产生不同的电路功能。但是,由于基于静态只读存储器(SRAM,Static Random Access Memory)的架构,FPGA 掉电后就变为白片,再次上电时需要EPROM 芯片对其进行加载。对于需要切换算法的场景,就需要通过上位机对其进行动态加载。本文在深入分析了FPGA 配置流程和理解CPCI 总线的基础上,设计实现了基于CPCI 总线的FPGA 动态加载。   1 硬件设计   系统中需要对三片Virt
[嵌入式]
基于PCI总线的电视图像处理仿真系统
引言 随着电视图像处理系统性能的提高,设计人员需要不断采纳新的数字图像处理算法,如何对这些新算法进行评估,如何将理论设计转化成工程应用成为设计人员关心的首要问题。 实现电视图像信号处理需要设计一套复杂的电路系统,且硬件电路的设计应综合考虑高速DSP芯片的开发、超大规模集成电路设计、视频转换、接口等复杂电路。设计印刷电路板和调试将占用设计人员较多的工作时间,较长的研制周期和较高的研制经费均不利于图像处理新思路、新算法向工程应用的转化。仿真系统能较大程度降低硬件电路设计的复杂性,缩短研制周期,有利于科研设计人员集中精力对新算法进行评估和测试。 能否实时采集和实时处理电视图像信号是设计仿真系统的关键问题。鉴于微型计算机运算速
[嵌入式]
基于PCI总线的实时图像识别与跟踪平台设计
摘要:介绍了PWM控制电路的基本构成及工作原理,给出了美国Silicon General公司生产的高性能集成PWM控制器SG3524的引脚排列和功能说明,同时给出了其在不间断电源中的应用电路。 关键词:PWM SG3524 控制器 在没有红外探测器或其它图像采集设备的条件下,可以先开发基于PCI总线的图像处理平台,由计算机模拟图像的生成并完成图像的高速传输,以缩短系统开发周期,使系统灵活、实用、便于进行功能扩展。采用美国TI公司的新一代高性能浮点数字信号处理器TMS320C6701(以下简称C6701)研制了实时图像识别与跟踪处理平台,利用不变矩进行图像识别,采用质心跟踪方案,获得了很好的实验效果。充分发挥了C6701强大的数
[应用]
PCI总线的存储器读写总线事务
总线的基本任务是实现数据传送,将一组数据从一个设备传送到另一个设备,当然总线也可以将一个设备的数据广播到多个设备。在处理器系统中,这些数据传送都要依赖一定的规则,PCI总线并不例外。 PCI总线使用单端并行数据线,采用地址译码方式进行数据传递,而采用ID译码方式进行配置信息的传递。其中地址译码方式使用地址信号,而ID译码方式使用PCI设备的ID号,包括Bus Number、Device Number、Function Number和Register Number。下文将以图1‑1中的处理器系统为例,简要介绍PCI总线支持的总线事务及其传送方式。 如表1‑2所示,PCI总线支持多种总线事务。而本节重点介绍存储器读写总线事务,I/O
[嵌入式]
电源系统设计:非完全“即插即用
许多年前,我们就已经开始使用“即插即用”一词来描绘一些易于使用的事物了。与过去相比,如今许多复杂设备在设置、配置和启用等方面都要比以往便捷得多。 今天,客户希望产品可以“开盒即用”。这样的期望与过去相比或多或少得到了合理满足。然而,这种外在的简单性却稍含欺骗成分。作为工程师,我们必须花更多心思简化产品的外在使用,尽管其内部可能相当复杂。 按照这种趋势,IC 组件供应商已经在努力简化其部件,充分满足系统设计人员的使用需求。与不久的过去相比,大多数 IC 产品说明书都提供详细的设计方程式、外部组件选择指南,乃至建议性 PCB 布局图,可帮助将给定 IC 整合于系统级设计。几乎所有编录中的 IC 都提供有评估套件,以帮助系统设计人员在开
[电源管理]
电源系统设计:非完全“<font color='red'>即插即用</font>”
基于CPCI总线架构设计的实时图像信号处理平台
DSP+FPGA混用设计 为了提高算法效率,实时处理图像信息,本处理系统是基于DSP+FPGA混用结构设计的。业务板以FPGA为处理核心,实现数字视频信号的实时图像处理,DSP实现了部分的图像处理算法和FPGA的控制逻辑,并响应中断,实现数据通信和存储实时信号。 首先,本系统要求DSP可以满足算法控制结构复杂、运算速度高、寻址灵活、通信能力强大的要求。所以,我们选择指令周期短、数据吞吐率高、通信能力强、指令集功能完备的DSP。同时也考虑了DSP功耗和开发支持环境等要素。 由于从探测仪传来的低层A/D信号,其差值预处理算法的数据量大,对处理速度的要求高,但运算结构简单,选用百万门级FPGA进行硬件实现。采用DSP+FPGA混用
[嵌入式]
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved