PLC和HMI在并条机上的应用

发布者:SerendipitySoul最新更新时间:2014-02-13 来源: eccn关键字:PLC  HMI  并条机 手机看文章 扫描二维码
随时随地手机看文章

并条机系统概述

棉条在变成粗纱、细纱的过程中,被成百倍的牵伸,其很短范围内的重不匀将影响很长范围内纱的质量。粗纱前的梳棉和并条过程是改善棉条重不匀,进而显著改善成纱质量的关键工序。并条工序处在改善棉条重不匀的最后环节,其自调匀整控制的效果将直接影响成纱质量。对并条机的自调匀整而言,主牵伸电机、辅助牵伸电机和条筒电机都需要进行控制,自调匀整的效果主要取决于主牵伸电机和辅助牵伸电机之间速 比的合理调节。条筒电机需要按照一定的速度与主牵伸电机和辅助牵伸电机同步启动和停止,条筒电机带动条筒的转动,以保证棉条均匀缠绕在条筒中,其速度控制精度对棉条的质量没有大的影响,因此,主牵伸电机和辅助牵伸电机的快速和精确控制应该为研究的重点。

邦纳PLC和HMI概述

美国邦纳是国际知名的传感检测和自动化技术专家。公司BSP01系列PLC、THM系列人机界面特别适合在纺织机械领域使用。

BSP01系列可编程逻辑控制器结构紧凑,性能卓越,功能丰富 ,通讯强大. A系列是高性能控制器,具有高的运算速度,大的程序容量,更多的应用指令,及更高的脉冲输出和高速计数功能。PLC最多可以扩充3个通讯端口,并具有 Computer link,Datalink和远距离输入输出功能三种特殊的网络通讯功能。THM人机界面性能卓越,外观精美,产品系列齐全。除了具有监视、操作、储存数据的基本功能外,还支持与大多数品牌的控制器、PLC、变频器等设备的通讯。在工厂自动化和过程自动化的各个领域都有广泛的应用。

自调匀整控制系统结构

在高速并条机的自调匀整控制中,从棉条被检测到相应的检测点到达变速点,中间有一个延时过程。该延时过程的精确控制是决定开环自调匀整控制效果的一个关键因素。这个延时相比于自调匀整的控制周期很大,所以该系统是一个典型的纯滞后大延时环节。该延时与系统速度有关,但是系统的模型未知,所以难以采用史密斯预估延时法。如果采用传统的定时查询法,CPU的大量时间耗费在查询上,系统运行效率低、精度不高而且自调匀整所能控制的片断的长度也降不下来。可以利用硬件在等位移条件下触发中断以实现与速度无关的精确延时,大大提高 CPU效率,并能实现并条机全程自调匀整控制。

并条机自调匀整硬件结构如图4所示,控制系统是主从式控制结构,工控机为主,PLC为辅。主要的控制功能:棉条的自调匀整在工控机中实现,PLC主要实现系统的逻辑控制,如自动换筒等,使工控机控制程序得以简化,提高了系统的可靠性。通用工控机、邦纳BSP01 系列PLC、两个伺服驱动器及1变频器之间通过通讯进行控制;触摸屏和PLC之间通过串口通讯,棉条的厚度由三个压力传感器测量,并通过工业控制计算机中的数据采集卡进行采集,进行自调匀整控制。

控制要点

并条机自调匀整的控制方式可分为开环、闭环和混合环三种形式。开环系统属针对性匀整,适合短片段不匀,闭环系统适合长片段不匀,混合环系统能兼长短片段不匀,但机构复杂,制造精度要求很高。并条工序对控制成纱重量不匀和重量偏差指标有非常重要的把关作用,对匀整的针对性具有较高的要求。

并条机的检测结构如图5所示,R1, R2, 和 R3 分别代表前罗拉(由主牵伸电机带动)、后罗拉(由辅牵伸电机带动)和给棉罗拉(通过传动机构:皮带轮与R2保持恒定的速度比)。S1, S2, 和 S3 是三个棉条厚度传感器, S3用于开环控制, S2用于闭环控制,S1用于波谱分析,B是喇叭口。主要通过合理调节R1与R2的速度比来达到自调匀整目的。为了改善棉条的不匀度,便于速度的调控,这里保持R1的速度不变,通过调节R2的速度实现自调匀整。因为是采用模拟量控制牵伸电机,所以,改变输出到R2的电压大小,就能调节R2的速度达到自调匀整的目的。

棉条的质量取决于两点:一是主、辅牵伸电机以及条筒电机三者的同步性,另一点即是三者之间合理的速度比。三者之间的合理的速度比通过后述的控制策略获得。而三者的同步性依赖于硬件的快速响应和软件的合理性,硬件的特点在前面已述。

对于并条机而言,开环控制可以消除死区,但是对来自牵伸系统干扰的影响无能为力,系统的稳定性较弱;闭环控制可以抑制干扰的影响,系统有着较强的鲁棒性,但不能消除死区。

并条机的控制过程是一个非线性,动态变化的过程,容易受到外部干扰(牵伸波,噪声等),很难建立统一的数学、物理模型。因此,为了消除死区,降低干扰的影响,提高系统稳定性,本文采用短开环和长闭环的混合控制模式,如图6所示。

开环的目的是避免死区并获得控制基本量uo,闭环的目的是抑制干扰,得到控制校正量△uc修正控制基本量uo。因此开环控制器和闭环控制器是并条机控制系统的核心。

工艺配置分析

1. 合理选择总牵伸倍数:并条机的牵伸范围较大,为5~15倍,在实际生产中,应根据实际工艺条件和质量要求,合理选择总牵伸倍数。因为喂入须条在牵伸过程中产生附加不匀的纤维的移距偏差会随着牵伸倍数的增大而增加,而移距偏差的增加势必会影响牵伸质量,因此,在实际生产中总牵伸倍数的选配不宜太大,一般而言,6根并合时在7倍以下,8根并合时在10倍以下较为适宜,否则,将不利于改善棉条条干水平。

2. 棉条定量的设定:尽管牵伸机构设置较为合理,对棉条定量的适应性较大,但配置的定量也不能太大,以避免因棉条定量过大导致须条间产生分层现象,影响棉条质量。


3. 合理选择主牵伸区罗拉隔距:通常采用摇架弹簧加压形式。在保证加压充分的前提下,为了最大限度地减小较短纤维的浮游动程,改善主牵伸区的牵伸质量,提高棉条条干水平,主牵伸区罗拉隔距以偏小掌握为宜。纺制长度整齐度较好的纤维时,主牵伸区罗拉隔距可适当放大。

4. 合理配置后区罗拉隔距和后区牵伸倍数:后区牵伸的主要作用是使喂入的条子略带张力,使纤维伸直,使须条具有一定的紧密度进入中区,再由中区进入主牵伸区后能够稳定牵伸,提高牵伸质量。后区牵伸倍数和后区罗拉隔距对棉条条干的影响较为明显,可结合加压压力、纤维性能及纺制品种等进行优选配置。

5. 选好压力棒位置:压力棒位置由二胶辊的前冲量和后移量来确定。在实际配置工艺时,可根据生产条件,对压力棒位置进行优选。

6. 合理确定托棉板入口大小:托棉板入口的大小要根据条子的定量和喂入根数确定,一般情况,8根并合时为12~16mm,6根并合时为9~13mm,也可根据实际情况随时调整,以保证喂入条子既不发生重叠又不过于分散为原则。

总结:

作为自动化行业的领先者,美国邦纳将利用几十年产品研发与应用经验,结合邦纳传统的优势产品:光电传感器系列、工业智能指示灯系列等等,与邦纳PLC控制器及HMI人机界面相集成,配合这些检测、信号传输等产品,为用户提供简易完整、强大稳定、可靠安全、灵活开放的解决方案,广泛应用在水处理、冶金、石油天然气、煤矿,水泥、印包、钢铁、电子、汽车、地铁、纺机等要求苛刻的现场环境中,为广大机器制造商和最终用户提供完整、简易,开放,集成和灵活的自动化解决方案。

关键字:PLC  HMI  并条机 引用地址:PLC和HMI在并条机上的应用

上一篇:伺服电机驱动器的广泛应用
下一篇:基于台达20PM运动控制器的电池极片轧辊机

推荐阅读最新更新时间:2024-05-02 22:57

三菱PLC控制伺服马达实例
以三菱PLC控制伺服马达为例,具体分享一下伺服马达控制步骤。 1.设置定位模块基本参数 在智能功能模块中(QD77MS系列)根据机械配置不同设置好相应的参数 基本参数设置 2.设置原点回归基本参数 根据实际情况选择:近点DOG型、数据设定型、计数型等原点回归方式。 原点回归方式 3.设置伺服放大器参数 设置绝对位置系统、相对位置系统、自动调谐相应等参数,也可以选择“一键式调整”进行相关的参数设置。 伺服放大器参数设置 4.伺服外部信号程序 包含伺服马达电源信号、伺服马达刹车信号等外围接入信号。 外部信号程序 5.原点回归程序 根据不同的原点回归方式,进行原点回归。 原点回归程序 6.手动程序 JOG+、JOG-
[嵌入式]
三菱<font color='red'>PLC</font>控制伺服马达实例
用于I/O卡和PLC应用的4通道、灵活、可配置、电压和电流输出电路
电路功能与优势 图1所示电路是一种仅使用两个模拟器件的多通道、灵活的模拟输出解决方案,它满足多通道I/O卡、可编程逻辑控制器(PLC)和分布式控制系统(DCS)应用的大部分要求。具有轨到轨缓冲输出的四通道、16位nanoDAC+ AD5686R 配合四个工业电流/电压输出驱动器 AD5750-2 使用,可提供所有典型的电流和电压范围的输出,其具有16位分辨率且无失码、0.05%的线性度以及小于0.1%的输出误差。   AD5686R集成了一个具有高驱动能力(最高±5 mA)、超低漂移(2 ppm/°C,典型值)的2.5 V基准电压源,能够同时为AD5686R和AD5750-2提供基准电压,确保电路的低噪声、高精度、低温
[电源管理]
用于I/O卡和<font color='red'>PLC</font>应用的4通道、灵活、可配置、电压和电流输出电路
铁合金冶炼过程能耗监测系统的实现
    本文从应用的角度,基于现场总线、自动化仪表技术及工控组态技术、0racle数据库、网络通讯技术、PLC等技术,介绍了铁合金冶炼过程能耗监测系统的设计思想和有关方法。对生产现场能源动力介质(机械检测点共计43点,如:电炉循环水用量、高压氧枪用水量等,电气检测点共计21点,如:电炉监测、炉风机监测等)进行实时采集、传输与处理,构建铁合金生产过程能耗监测信息平台。     1监测系统组成     该系统由PLC主站、计算机控制系统、配料系统、电炉本体系统、分布式远程I/O站、现场控制设备及检测仪表、工业以太网及PROFIBUS—DP现场总线等组成。其组成框图如图1所示。     在主控室设PLC主站,PLC主站主要由电源模块、
[嵌入式]
非线性露点温度曲线在和利时LM系列PLC中的实现
  1 概述   随着各行各业对 湿度测量 的要求越来越高,湿度测量已逐渐成为一个新兴的技术领域。本文以与湿度有关的露点温度数据处理为例,介绍 非线性露点 温度曲线在和利时LM系列 PLC 中的实现方法。   我国在1986年正式成立了湿度与水分专业委员会,并开展了多次学术交流会,湿度的一些计量检定规程也逐步建立。根据有关规程,湿度被定义为气体中的水蒸气含量,其常用单位是PPM。习惯上,以露点-20℃为界,把所测气体分为高湿度气体和低湿度气体。露点温度指空气在水汽含量和气压都不改变的条件下 控制工程网版权所有 ,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度
[嵌入式]
基于虚拟仪器的PLC监控系统设计
  0 引言   在过程控制中,由于工业现场非常分散,I/O点数众多,各种仪表的工作环境非常恶劣,采用数据采集卡和LabVIEW开发平台来完成现场的数据采集和控制显然不可取。考虑到过程控制中的过程参数变化不是很快,而PLC恰恰可以克服数据采集卡在过程控制中的不足,并且具有较高的性价比,因而采取以PLC为下位机,以装有LabVIEW软件的工控机为上位机开发平台。通过RS-232和RS-485串口与PLC通信,实现对工业现场的监控与现场数据的分析。本文根据这个思想设计了一个工业远程监控系统,上位机采用PC机,下位机采用西门子PLC S7-200。介绍了一种在LabVIEW 8.6平台上开发PC机和PLC实时监控的软件的编程方法,在此
[测试测量]
基于虚拟仪器的<font color='red'>PLC</font>监控系统设计
三菱PLC边沿检测脉冲指令功能及使用说明
三菱 PLC 的边沿检测脉冲指令有LDP, ANDP, ORP,LDF, ANDF, ORF,这些指令的说明如下: 1、指令符与功能    边沿检测脉冲指令的指令符与功能如下表所示。 2、指令使用说明   1) LDP:从母线直接取用上升沿脉冲触点指令。   2) LDF:从母线直接取用下降沿脉冲触点指令。   3) ANDP:申联上升沿触点指令。   4) ANDF:串联下降沿触点指令。   5) ORP:并联上升沿触点指令。   6) ORF:并联下降沿触点指令。   7) LDP, ANDP, ORP是用来检测触点状态变化的上升沿(由OFF- ON变化时)的指令,当上升沿到来时,使其操作对象接通一个扫描周期,又称上升
[嵌入式]
PLC如何与其余设备连接
1. PLC与主令电器类设备的连接 如图6-4所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。若是分组式输入,也可参照图6-4的方法进行分组连接 2. PLC与旋转编码器的连接 旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。 如图6-7所
[嵌入式]
<font color='red'>PLC</font>如何与其余设备连接
SIMATIC S7-1500 PLC梯形图编程(4)
【例4】用复位和置位指令编写。 步进电机是一种将电脉冲信号转换为电动机旋转角度的执行机构。当步进驱动器接收到一个脉冲,就驱动步进电动机按照设定的方向旋转一个固定的角度(称为步距角)。因此步进电机是按照固定的角度一步一步转动的。因此可以通过脉冲数量控制步进电机的运行角度,并通过相应的装置,控制运动的过程。对于四相八拍步进电动机。其控制要求如下。 1、按下启动按钮,定子磁极A通电,ls后A、B同时通电;再过1s,B通电,同时A失电;再过1s,B、C同时通电.....以此类推,其通电过程如图1所示。 2、有2种工作模式。工作模式1时,按下“停止”按钮,完成一个工作循环后,停止工作;工作模式2时,具有锁相功能,当压下“停止”按钮后
[嵌入式]
SIMATIC S7-1500 <font color='red'>PLC</font>梯形图编程(4)
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved