步进电机优化控制

发布者:朱雀最新更新时间:2014-02-18 来源: 21ic关键字:步进电机  优化控制  细分原理  PWM控制技术 手机看文章 扫描二维码
随时随地手机看文章

0 引言

步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,输入脉冲总数控制步进电机的总旋转角度,电机的速度由每秒输入脉冲数目所决定,因此易实现机械位置的精准控制。而且由于步进电机价格低廉、可控性强等特点,使其在数控机床传送控制等自动控制领域中得到了广泛的应用。但随着技术的发展以及企业生产的要求,步进电机传统的以单片机等微处理器为核心单元的控制系统暴露出了如下缺点:控制策略单一不利于实现人机交互,而且控制电路复杂、控制精度低、生产成本高,系统稳定性不够,步进分辨率低、缺乏灵活性,低频时的振荡和噪声大,而且受步进电机机械结构和空间的限制,步进电机的步距角不可能无限的小,难以满足高精度开环控制的需求。由于FPGA编程方式简单,开发周期短,可靠性高,使其在工业控制领域的应用越来越广泛。本文在总结FPGA的分频技术以及步进电机细分控制原理的基础上,通过PWM控制技术来提高步进电机的分辨率,仿真和实验表明,本文采取的措施有效地实现步进电机控制的高效、精确控制。

1 步进电机细分控制原理

步进电机的工作原理如图1所示,对四相步进电机而言,按照一定的顺序对各相绕组通电即可控制电机的转动。例如,当开关B与电源导通而其他开关断开时,在磁力线的作用下B相磁极和转子0,3号对齐;当开关C与电源导通而其他开关断开时,在磁力线的作用下,转子转动,1,4号齿和C相绕组的磁极对齐。同理,依次向A,B,C,D四相绕组供电,电机就会沿着A,B,C,D方向转动。

为了理解步进电机的不足,还需了解步进电机的步距角。步距角的定义为:

θ步距=360°/(kmzn) (1)

式中:km为步进电机的工作节拍系数;zn为齿数。

受步进电机的拍数和转子齿数的限制,步进电机的步距角不可能非常小,即每一单步控制的转动量相对比较大,在许多精密控制领域,步进电机的功能达不到使用要求。因此为了提高步进电机的分辨率,需采用细分控制技术对其进行优化控制。细分控制类似于插值,其基

本原理就是将电机绕组中的电流细分,在两个控制电流之间增加许多中间状态的电流,使得步进电机可以工作在许多中间的状态,从而使得步进电机的每一步得到细分,其步距角更小,系统的分辨得到提高,性能得到优化。而细分控制通常有两种细分方式,一是使电流按线性规律变化来细分,二是按等步距角细分。为了比较两种细分方式的优劣,还需要了解步进电机工作时的静态距角特征。

M=-Mksinθ=-kti2sinθ (2)

式中:M为电磁转矩;Mk为一定绕组电流时的最大静转矩;对于反应式步进电机,当不考虑磁路饱和时,可以认为Mk与电流i的平方成正比,负号表示电磁转矩与定子磁场之间为楞次关系,即电磁转矩总是阻碍转子离开磁场最小磁阻的位置。

现以三相反应式步进电机来分析两种细分方式。三相反应式步进电机三相绕组分别通电时,其矩角特性为彼此相差120°电角度的正弦曲线,如图2所示。[page]

当A、B两相通电时,设电流分别为iA、iB,相应的静转矩为MA、MB,忽略磁路之间的影响,其合成矩角特性为二者相叠加,如式(3)所示:

由公式(3)和(4)可知,当步进电机的电流按照线性规律变化时,其距特性如图3(a)所示。由于距角特征幅值因通电电流的不同而各不相等,因此各细分步的步距角就不能保持一致。理想的细分电流波形应使各通电状态下的步距角特性的幅值、形状均相等,如图3(b)所示。

因此电流按线性规律变化的细分方式使得细分后的每一小步的控制精度不相等。而如果按等步距角细分,则细分后的步距角为:

如果在控制电路中严格按照电流分配系数来控制各个通电状态,则能够保证细分后的每一小步的控制精度相等。因此本文采用按等步距角的细分方式。

2 步进电机细分控制硬件的实现

为了实现步进电机的等步距角细分,本文采用脉冲宽度调制(PWM)的方式来实现。PWM就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲。这些脉冲综合在一起即可形成等效的正弦波、方波等预期的波形。而等效输出波形的质量与脉冲的步距有关,即同一时刻输出的PWM路数越多,则脉冲密度越高,则输出等效波形的质量就越好。而传统的步进电机控制系统多采用单片机作为微处理器,而单片机是单线程的微处理器,同一时刻只能执行一条命令,也即是同一时刻只能产生一路PWM信号,因此输出波形质量较差,从而导致步进电机的控制精度偏低。而FPGA的运算速度远远高于单片机的运算速度,且通过模块化设计可以使其处于多线程工作模式,即可以同时产生多路PWM信号,提高了输出等效波形的质量。本文中选取Altera公司2004年推出了新款CycloneⅡ系列FPGA器件作为开发平台,同时输出8路PWM信号,控制实现四相步进电机的16细分。同时利用串口模块与上位机相连以实现人机交互。系统原理图如图4所示。

关键字:步进电机  优化控制  细分原理  PWM控制技术 引用地址:步进电机优化控制

上一篇:一种采用PCI 软核的轴角数据采集系统
下一篇:空气压缩机防喘振优化控制系统设计

推荐阅读最新更新时间:2024-05-02 22:58

在电源转换应用中实现高性能、成本优化型实时控制设计
在持续需要更高性能和效率的实时电源转换领域,投资可扩展且可持续的工业和汽车电源转换解决方案对设计人员来说至关重要。这种需求反之导致对实时控制系统资源的需求,例如在伺服驱动系统,电力与电网基础设施和车载充电应用对MCU每秒百万条指令(MIPS)的计算算力、脉宽调制器(PWM)和模拟-数字转换器(ADC)数量。这也导致开发人员需要以简单和低风险的方式构建和维护其产品线。性能可扩展性和产品组合兼容性为开发人员提供了一种省力而又经济高效的方式来扩展实时控制资源并维护长期电源转换解决方案的平台。 通过分布式架构扩展实时控制资源 可再生能源的兴起推动了诸如太阳能逆变器等应用中使用更高功率水平。随着功率水平的提高,需要更多在功率转换过程
[电源管理]
在电源转换应用中实现高性能、成本<font color='red'>优化</font>型实时<font color='red'>控制</font>设计
基于预测控制的储能系统多时间尺度动态响应优化研究
基于预测控制的储能系统多时间尺度动态响应优化研究 吴传申,刘宇,高山*,邹子卿,黄学良 (东南大学 电气工程学院) 本文发表在《全球能源互联网》2020年第3期,受国家自然科学基金项目(51907024)资助。 文章导读 风电作为无污染可再生能源的代表,得到了广泛应用。然而,随着风电渗透率的不断增加,其随机性和不稳定性已经成为影响微网可靠运行及其电能质量的巨大挑战。风电的峰谷特性及波动性给电力系统带来诸多负面影响,且风电预测误差具有随时间延长而增大的特点。针对上述问题,本研究提出一种基于模型预测控制(MPC)技术的储能系统多时间尺度动态响应优化技术,利用不同储能系统的容量与响应速度特性,滚动优化风电系统
[新能源]
51单片机学习笔记【八】——步进电机
一.步进电机基础 1.定义 步进电机是将电脉冲转化为角位移的执行机构,主要使用永磁性步进电机,本实验使用的步进电机为四线双性步进电机; 步进电机的相数指产生不同极性N,S磁场的激磁线圈对数,常用m表示; 步进电机的拍数指完成一个磁场周期性变化所需脉冲数,以四线二相电机为例: 单向四拍:A/-B-A-B/ 双向四拍:A/B-AB-AB/-A/B/ 单&双八拍:A/-A/B-B-AB-A-AB/-B/-A/B/ 步进角指定子没改变一次通电状态,转子转过的角度,与磁极数,定子相数,通电方式节拍成负相关。计算 360/(m*Z*C) m–定子向数 Z–转子磁极数 C–通电方式 C=1 单或双轮流通电 C=2 单和双轮流通电 2.步进电
[单片机]
51单片机学习笔记【八】——<font color='red'>步进电机</font>
AFS系统步进电机控制和关键诊断
步进电机分为变磁阻(VR)、永磁(PM)和混合型(Hybrid)步进电机,在车用环境中,最常用的是永磁型步进电机,其转子是永磁体。在汽车应用环境中,也有许多场合需要用到步进电机,如AFS前大灯水平位置调节、弯道调节和光线几何形状调节,都需要用到步进电机作为执行器。图1是典型的AFS系统示意图。图2是英飞凌针对AFS应用的芯片组解决方案。 英飞凌作为领先的汽车半导体提供商,为解决汽车步进电机控制和驱动问题,研发了步进电机专用控制芯片TLE4729G。这颗控制器具有一系列优异的性能,被大多数零部件供应商在系统集成中采用。   英飞凌在提供TLE4729G基本的数据手册之外还提供了多篇应用笔记以方便客户快速对系统进行
[嵌入式]
STM32C8T6控制步进电机
STM32C8T6发送控制信号给电机驱动,电机驱动控制步进电机。 电机驱动:控制一个步进电机转动,使用一路PWM信号和一路方向信号,根据pwm信号的频率控制步进电机的转速,方向信号控制步进转动的方向。 void SteppingMotor_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); RCC_APB2
[单片机]
单片机控制系统的抗干扰优化设计
  随着电子技术和微型计算机的迅速发展,促进了微型计算机控制技术的迅速发展和广泛应用。中小规模的单片机控制系统在工业生产及日常生活中的智能机电一体化产品得到了广泛的应用。在单片机控制系统的设计开发过程中,我们不单要突出设备的自动化程度及智能性,另一方面也要重视控制系统的工作稳定性,否则就无法体现控制系统的优越性。 1. 系统受到干扰的主要原因和现象   由于单片机控制系统应用系统的工作环境往往是比较恶劣和复杂的,其应用的可靠性、安全性就成为一个非常突出的问题。单片机控制系统应用必须长期稳定、可靠地运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大的损失。   影响单片机控制系统应用的可靠、安全运行的主要因素是来自系统内
[单片机]
51单片机PWM细分控制步进电机的研究初稿
为什么要PWM细分呢?因为这样可以是步进电机运行平稳、减小噪音、增大转速(MAX的)、增加力矩 为什么要强调是51单片机呢?因为51单片机没有硬件PWM模块,所以只能软件模拟了 研究这玩意儿,我走了许多弯路,看了许多文献,最后发现,尽信书不如无书 就用28系列4相5线电机来说吧。 整步驱动(四相四拍)时序为: A相 B相 C相 D相 1拍 1 0 0 0 2拍 0 1 0 0 3拍 0 0 1 0 4拍 0 0 0 1 我想没人用这样的方式来驱动吧,这震动也太大了。 2细分驱动(四相八拍)时序为: A相 B相 C相 D相
[单片机]
51单片机<font color='red'>PWM</font><font color='red'>细分</font><font color='red'>控制</font><font color='red'>步进电机</font>的研究初稿
基于非线性控制系统优化的遗传算法研究
    摘 要: 针对非线性控制系统参数优化问题,结合非线性控制系统理论、最优化理论及遗传算法,提出了一种新的仿真优化方法,该方法利用遗传算法来求解非线性控制系统参数优化问题。     关键词: 遗传算法 参数优化方法 非线性控制系统     控制系统参数优化方法已有许多文献作了论述 ,这些方法大多是基于估计目标函数对优化变量的梯度信息进行优化。而对非线性控制系统参数优化问题,由于控制系统具有非线性特性,基于估计目标函数对优化变量的梯度信息进行优化的方法就显得无能为力了。     遗传算法是最新兴起的智能计算技术,是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机自适应搜索算法,具有能快速有效地搜索
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved