PCI总线和PCIE总线的差异

发布者:水墨人生最新更新时间:2014-02-21 来源: ofweek关键字:PCI总线  PCIE总线  工作频率 手机看文章 扫描二维码
随时随地手机看文章
    由于公司产品一直以X86架构为基础发展,在前几年中一直受到ASIC、NP架构等厂商的攻击,但是随着技术的发展,在PCI-E架构出现后,效率的瓶颈得以突破。

  最初PCI总线是32bit,33Mhz,这样带宽为133Mbps。

  接着因为在服务器领域传输要求Intel把总线位数提高到64,这样又出现了2种PCI总线,分别为64bit/33Mhz和64bit/66Mhz,当然带宽分别翻倍了,为266Mbps和533Mbps,这个比较通常的名称应该是pci-64,但这好像是intel自己做的,没有行业标准。

  稍后一段时间,在民用领域,单独开发出了AGP,32bit,66Mhz,这样带宽为266Mbps,再加上后来AGP2.0的2X和4X标准,最高4X的带宽高达1Gbps,但是这个只是为显卡设计的。

  同时服务器领域也没闲着,几家厂商联合制定了PCI-X,这个就是真正PCI下一代的工业标准了,其实也没什么新意,就是64bit,133Mhz版本的PCI,那这样带宽就为1Gbps,后来PCI-X 2.0,3.0又分别提升频率,经历过266Mhz,533Mhz,甚至1GMhz,各位自己算带宽吧,我乘法学的不好,这个带宽可以说是非常足够的了,不过这个时候PCI也面临一些问题:一方面是频率提高造成的并行信号串扰,另一方面是共享式总线造成的资源争用,总之也就是说虽然规格上去了,但实际效果可能跑不了这些指标。

  然后就是我们目前的明星pci-E了,这个标准应该是和pci-X同时出现的,但是由于当时用不到这么高带宽,并且不像pci-X一样兼容老pci板卡,所以一直没什么发展,直到最近民用领域显卡带宽又不够了,服务器领域对pci-X也觉得不爽了,pci-E才真正显出优势来,目前这个标准应该会替代agp和pci-X,成为民用和服务器两大领域的统一标准。

PCI-E标准的最大特点就是串行总线,和普通pci的区别类似于ide和sata的区别,具体说起来就比较麻烦了,简单来看指标的话,频率为2.5Ghz(这个恐怖,串行的好处,同样因为串行,位宽就没意义了,但是据说是什么8bit/10bit的传输),带宽 pci-E 1X单向传输250MBps,双向也就500了,同时pci-e的倍速最高可达16X,多少就自己乘吧,要注意的是pci-e不存在共享问题,也就是说挂在总线上的任何一个设备都会达到这个速度而不是所有设备带宽的总合。下面引用一篇文章的一段,感兴趣的自己看一下:

  在工作原理上,PCI Express与并行体系的PCI没有任何相似之处,它采用串行方式传输数据,而依靠高频率来获得高性能,因此PCI Express也一度被人称为“串行PCI”。由于串行传输不存在信号干扰,总线频率提升不受阻碍,PCI Express很顺利就达到2.5GHz的超高工作频率。其次,PCI Express采用全双工运作模式,最基本的PCI Express拥有4根传输线路,其中2线用于数据发送,2线用于数据接收,也就是发送数据和接收数据可以同时进行。相比之下,PCI总线和PCI-X总线在一个时钟周期内只能作单向数据传输,效率只有PCI Express的一半;加之PCI Express使用8b/10b编码的内嵌时钟技术,时钟信息被直接写入数据流中,这比PCI总线能更有效节省传输通道,提高传输效率。第三,PCI Express没有沿用传统的共享式结构,它采用点对点工作模式(Peer to Peer,也被简称为P2P),每个PCI Express设备都有自己的专用连接,这样就无需向整条总线申请带宽,避免多个设备争抢带宽的糟糕情形发生,而此种情况在共享架构的PCI系统中司空见惯。

  由于工作频率高达2.5GHz,最基本的PCI Express总线可提供的单向带宽便达到250MBps(2.5Gbps×1 B/8bit×8b/10b=250MBps),再考虑全双工运作,该总线的总带宽达到500MBps—这仅仅是最基本的PCI Express ×1模式。如果使用两个通道捆绑的×2模式,PCI Express便可提供1GBps的有效数据带宽。依此类推,PCI Express ×4、×8和×16模式的有效数据传输速率分别达到2GBps、4GBps和8GBps。这与PCI总线可怜的共享式133MBps速率形成极其鲜明的对比,更何况这些都还是每个PCI Express可独自占用的带宽。

  在PCI-E架构出现后,X86架构的产品有机会能和ASIC、NP架构的产品在性能上做抗衡,同时由于X86架构的产品在设计和开发上的便利性,产品竞争能力将进一步提高

关键字:PCI总线  PCIE总线  工作频率 引用地址:PCI总线和PCIE总线的差异

上一篇:基于PAC运动控制系统方案
下一篇:基于CAN总线的汽车发动机控制器研究

推荐阅读最新更新时间:2024-05-02 22:59

一种基于Compact PCI总线的数据采集系统设计
引言   数据采集的实时性和可靠性是关系工业控制系统性 能的重要因素,数据采集系统的速率主要取决于A/D转换、通信接口和总线传输的速率。 TI公司推出的DSP芯片TMS320F2812具有很高的工作频率和丰富的外设资源,能够满足采集系统的实时性要求,同时又降低了系统设计的成本。Compact PCI总线作为PCI总线向工业控制领域的拓展,除了 具备高速的传输速率,还具备优良的机械特性和电气特性。本文研制了一种基于Compact PCI总线的数据采集系统,系统以DSP作为控制核心,可以进行模拟信号采集、并行接口和串行接口的数据信号的采样。 1 Compact PCI总线简介   Compact PCI总线与PCI标准完全
[嵌入式]
基于PCI总线的嵌入式实时图像处理系统
本文着眼于图像处理系统的发展要求,说明了基于PCI总线的DSP图像处理系统的优点,并详细阐明了系统的硬件结构和PCI总线的驱动实现,最后介绍了系统实现的效果。 1 图像处理系统发展现状 在计算机信息处理及应用中,图像信息处理以及处理结果的应用占有十分重要的地位。图像处理的发展依赖于处理器芯片(包括单片机、DSP等)技术的应用和发展,以及大容量、价格低廉的存储器的出现。图像处理系统虽然由机箱式大体积结构发展为插卡式小型化结构,但是由于图像处理存在大量的数据信息,在实时性和容量上一般不能满足多数需要实时处理的场合。这主要体现在如下2个方面。 1.1 实时性要求 图像处理系统有很多种实现方法,比如在通用计算机上用软件实现、用单片机
[嵌入式]
选频放大器的工作原理与双T电桥的频率特性
选频放大器的 工作原理与双T电桥的频率特性 选频放大器,它从多种频率的输入信号中,选取所需的一种频率信号加以放大下图所示的方框图可以构成选频放大电路,其中方框K是基本放大电路,方框F是选频负反馈网络,因此,选频放大器实质上是一种具有选频作用的负反馈电路。电路的闭环益为 KF=K/(1+FK) 式中:K=UO/Ui是开环增益 F=UF/UO 是反馈系数 一般用RC选频网络实现选期,图(b)示出反馈系数F随频率f的变化曲线(频率特性),当f=fo时,则F=0。所以,对谐振频率fo来说,放大电路不存在负反馈,故KF=K,此时放大器的输出电压最大。随着频率远离fo,F就急速地增加,相
[模拟电子]
选频放大器的<font color='red'>工作</font>原理与双T电桥的<font color='red'>频率</font>特性
VersaLogic推出Mini PCIe接口的双通道CAN总线扩展板
VersaLogic公司通过新的“ C1”模块扩展了其工业温度范围的耐用型Mini PCIe扩展产品,新的双通道CAN总线扩展板提供了一种向任何嵌入式计算机系统添加高速CAN总线端口的方法,尤其是在恶劣环境中的系统。 CAN-FD和CAN 2.0A/B C1支持CAN-FD和高达5 Mbps的高速信令,它也向后兼容CAN 2.0 A和CAN 2.0 B,传输速率高达1 Mbps。C1支持多种CAN功能,包括消息接受过滤器和仅侦听模式。 CANopen高级协议 C1支持高级CANopen协议,该协议标准化了不同制造商的设备和应用程序之间的通信,并且是为自动化中使用的嵌入式系统开发的,从而使其可用于工业机械,国防和航空航天,医
[工业控制]
基于SOPC的PCI总线高速数据传输系统设计
        随着战场电磁环境复杂程度越来越高,侦察与通信系统的融合成为一种必然的发展趋势。数据量大、算法复杂是数字化侦察接收系统的主要特征。使用DSP和FPGA进行高速信号谱分析、滤波等预处理,借助通用计算机平台实现信号的分选、显示等后处理是一种理想的系统设计方案。因此,如何构建与PC机间的高速数据通道,便成了侦察接收系统设计中的关键问题之一。PCI (Peripheral CompONent Interconnect)总线,即外围部件互连总线,是目前应用最广泛的一种高速同步总线,在32位总线宽度33Mz时钟下,其理论最大传输速率可达132Mbyte/s (64位总线宽度66MHz时可达到528Mbyte/s),因此成为上述侦察
[嵌入式]
PCI总线从设备控制器的设计与实现
  0 引言   随着星载电子系统复杂度、小型化需求的提高,片上系统(System on Chip SoC)已 经成为应对未来星载电子系统设计需求的解决途径。为了简化设计流程并且提高部件的可重 用性,在目前的SoC 设计中引入了称之为平台的体系结构模板,用它来描述采用已有的标准 核来开发SoC 的方法。本文所作的工作主要是按照建立SoC 集成设计平台的需求,根据当前 国际航天领域的技术现状,选择PCI(Peripheral Component Interconnect)总线作为SoC 集成设计平台所能提供的一种总线模块,根据可重用的IP(Intellectual Property)设计 思想对PCI 总线从设备控制器进行设计实
[嵌入式]
基于研华CPCI总线架构设计的实时图像信号处理平台
一. 系统设计的相关技术 1.1 DSP+FPGA混用设计简介 为了提高算法效率,实时处理图像信息,本处理系统是基于DSP+FPGA混用结构设计的。业务板以FPGA为处理核心,实现数字视频信号的实时图像处理,DSP实现了部分的图像处理算法和FPGA的控制逻辑,并响应中断,实现数据通信和存储实时信号。 首先,本系统要求DSP可以满足算法控制结构复杂,运算速度高,寻址灵活,通信能力强大的要求。所以,我们选择指令周期短、数据吞吐率高、通信能力强、指令集功能完备的DSP。同时也考虑了DSP功耗和开发支持环境等要素。 由于从探测仪传来的低层A/D的信号,其差值预处理算法的数据量大,对处理速度的要求高,但运算结构简单,选用
[嵌入式]
超声波物位计的选择
超声波物位计工作频率及测量性能:传感器高频(40-70KHz)工作时,传感器的尺寸小,盲区小,方向性好,精度高,但其声波衰减快,传播介质(空气)波动时穿透性差,测距较小。传感器低频(10-20KHz)工作时,传感器尺寸大,盲区大,方向性不好,精度低,其优势是声波衰减慢,传播介质(空气)波动时穿透性较好,测距稍远。 传感器发出的超声波碰到被测介质被反射,反射回波的质量反映了物位计应用效果。回波质量定义为最小回波幅度(在最恶劣条件下回波幅度)比最大噪声幅度(虚假回波、多径反射回波等的幅度)。回波质量数值越大,物位计应用效果越好。 超声波的回波强度主要受以下两个因素影响: 1.传播介质越稳定越有利于传播。 超声波是机械波。机械波
[测试测量]
超声波物位计的选择
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved