移动机器人视觉定位方法的研究

发布者:玉立风华最新更新时间:2014-03-17 来源: eefocus关键字:机器人  目标跟踪  视觉定位 手机看文章 扫描二维码
随时随地手机看文章
针对移动机器人的局部视觉定位问题进行了研究。首先通过移动机器人视觉定位与目标跟踪系统求出目标质心特征点的位置时间序列, 然后在分析二次成像法获取目标深度信息的缺陷的基础上, 提出了一种获取目标的空间位置和运动信息的方法。该方法利用序列图像和推广卡尔曼滤波, 目标获取采用了H IS 模型。在移动机器人满足一定机动的条件下, 较精确地得到了目标的空间位置和运动信息。仿真结果验证了该方法的有效性和可行性。

运动视觉研究的是如何从变化场景的一系列不同时刻的图像中提取出有关场景中的目标的形状、位置和运动信息, 将之应用于移动机器人的导航与定位。首先要估计出目标的空间位置和运动信息, 从而为移动机器人车体的导航与定位提供关键前提。

视觉信息的获取主要是通过单视觉方式和多视觉方式。单视觉方式结构简单, 避免了视觉数据融合, 易于实现实时监测。如果利用目标物体的几何形状模型, 在目标上取3 个以上的特征点也能够获取目标的位置等信息。此方法须保证该组特征点在不同坐标系下的位置关系一致, 而对于一般的双目视觉系统, 坐标的计算误差往往会破坏这种关系。

采用在机器人上安装车载摄像机这种局部视觉定位方式, 本文对移动机器人的运动视觉定位方法进行了研究。该方法的实现分为两部分: 首先采用移动机器人视觉系统求出目标质心特征点的位置时间序列, 从而将对被跟踪目标的跟踪转化为对其质心的跟踪; 然后通过推广卡尔曼滤波方法估计目标的空间位置和运动参数。

1 目标成像的几何模型

移动机器人视觉系统的坐标关系如图1 所示。

其中O-X Y Z 为世界坐标系; O c - X cY cZ c 为摄像机坐标系。其中O c 为摄像机的光心, X 轴、Y 轴分别与X c 轴、Y c 轴和图像的x , y 轴平行, Z c 为摄像机的光轴, 它与图像平面垂直。光轴与图像平面的交点O 1 为图像坐标系的原点。O cO 1 为摄像机的焦距f .


图1 移动机器人视觉系统的坐标关系

不考虑透镜畸变, 则由透视投影成像模型为:


式中, Z′= [u, v ]T 为目标特征点P 在图像坐标系的二维坐标值; (X , Y , Z ) 为P 点在世界坐标系的坐标; (X c0, Y c0, Z c0) 为摄像机的光心在世界坐标系的坐标; dx , dy 为摄像机的每一个像素分别在x 轴与y 轴方向采样的量化因子; u0, v 0 分别为摄像机的图像中心O 1 在x 轴与y 轴方向采样时的位置偏移量。通过式(1) 即可实现点P 位置在图像坐标系和世界坐标系的变换。

2 图像目标识别与定位跟踪

2.1 目标获取

目标的获取即在摄像机采集的图像中搜索是否有特定目标, 并提取目标区域, 给出目标在图像中的位置特征点。

由于机器人控制实时性的需要, 过于耗时的复杂算法是不适用的, 因此以颜色信息为目标特征实现目标的获取。本文采用了HS I 模型, 3 个分量中,I 是受光照影响较大的分量。所以, 在用颜色特征识别目标时, 减少亮度特征I 的权值, 主要以H 和S 作为判定的主要特征, 从而可以提高颜色特征识别的鲁棒性。

考虑到连通性, 本文利用捕获图像的像素及其八连通区域的平均HS 特征向量与目标像素的HS特征向量差的模是否满足一定的阈值条件来判别像素的相似性; 同时采用中心连接区域增长法进行区域增长从而确定目标区域。图2 给出了目标区域分割的算法流程。


图2 目标区域分割算法流程

实现目标区域提取后, 由于目标有一定的大小和形状, 为了对目标定位, 必须在图像中选取目标上对应的点的图像位置。由于目标的质心点具有不随平移、旋转与比例的改变而变化的特点, 故选取目标的质心点作为目标点。[page]

质心坐标计算公式如下:


式中:

为质心坐标; n 为目标区域占据的像素个数, 且n≥2; (x i, y i) 为第i 个像素的坐标; p (x i, y i)为第i 个像素的灰度值。+

2.2 目标跟踪

运动目标的跟踪是确定同一物体在不同帧中位置的过程, 当运动目标被正确检测出来时, 它就对相邻帧中检测出的目标进行匹配。匹配过程如下:

2. 2. 1 目标质心位置预测

目标位置预测是依据最小二平方预测原理由目标质心在本帧以及相邻的连续前几帧的位置值,直接预测出目标质心在下一帧的位置值。在等间隔观测条件下, 可用式(4) 的简便预测:


2. 2. 2 搜索聚类的种子点

在搜索与上一帧图像对应质心点匹配的点时,采用基于子块的模式匹配方法。子模块是由待匹配的点与周围8 个邻点组成。由于这种方法充分考虑了特征点的统计特性, 识别率大大提高。

首先从预测质心点开始, 在100×100 像素的动态窗口(以预测质心点为中心) 内, 按照逆时针搜索周围8 邻域象素的趋势进行环状搜索, 并分别计算由每个搜索象素决定的子块与上一帧的目标质心点T 决定的子块的HS 特征值之差的平方和。


其中P [ i ] [ j ] ( i, j = 0, 1, 2) 表示由点P 决定的子块中的各个像素; T [ i ] [ j ] ( i, j = 0, 1, 2) 表示由上一帧的质心点决定的子块中的各个像素。

最后, 判定某个点P 是否与上一帧的特征点T 匹配的标准为: P 须同时满足式(7, 8)。


其中P. H表示待匹配点P 的H 特征值;m eanH 表示目标区域的平均H 特征值; 满足式(8) 能够保证匹配点在目标区域内。

2. 2. 3 聚类色块区域

其目的是找出色块区域, 色块区域的质心点即为特征跟踪结果。在步骤(2) 中已经找到了聚类的起始点, 由于H 反映图像的色彩特性, 所以根据匹配点的H 特征值是否在由色块的平均H 特征值确定的某个范围内来聚类色块区域, 即满足式(8)。这样既可保证识别精度, 又减少了图像信息计算量。

3 二次成像法

设Z c1, Z c2分别表示在t1, t2 时刻目标与成像系统的距离(深度值) ; d 1′, d 2′分别表示t1, t2 时刻目标在图像平面的几何特征值, 为便于表示, d 1′, d 2′可以是目标的像的外接圆直径或者外接矩形的边长, 则有:


式(9) 表明: 根据同一目标、同一摄像机所摄物体的图像几何特征的变化, 可以计算出它们在空间深度方向运动时距离所发生的变化, 这就是二次成像法的原理。

分析式(9) 可知, 二次成像法能够确定目标在摄像机坐标系中的位置, 但该方法在摄相机两次成像的位置变化不大的情况下误差会比较大, 而且不能得到目标的运动信息。为此本文提出了利用序列图像和推广卡尔曼滤波来估计目标的空间位置和运动信息的方法。

4 目标的空间位置和运动参数估计

由于图像序列前后两帧的时间间隔T 很小,本文用二阶微分方程来描述P 点的运动轨迹。定义状态矢量:


则可以定义状态方程为:


其中:


V (k ) 为模型噪声, 假设V (k ) 为零均值的高斯白噪声, 其方差阵为Q (k ) = cov (V)。[page]

将式(1) 离散化得:


其中n (k ) 为测量噪声。假设n (k ) 为零均值的高斯白噪声, 其方差阵为R (k ) = cov (n)。

则式(10, 11) 组成系统的离散状态方程和测量方程, 当该系统满足可观测性条件:


时, 就可以应用推广卡尔曼滤波对目标的空间位置和运动状态进行估计。其中r ( t) , v ( t) 分别为目标相对于车体的位置和速度, 下标t 代表目标, i 代表成像系统, a ( t) 为任意的标量。

5 实验结果

利用微软提供的V FW 视频处理开发软件包,由CCD 摄像机和相应的视频采集卡获取移动机器人前的场景图像数据, 在Delph i 6 下开发了移动机器人视觉定位与目标跟踪系统的完整程序。本算法在CPU 主频为500MHz, 内存为256MB 环境下, 对帧速率为25 帧?s, 图像分辨率为320×240的共180 帧视频图像进行了实验, 最终实现了对运动目标快速、稳定的跟踪。图3 给出了部分帧图像的目标定位与跟踪结果。


图3 目标定位与跟踪结果。

为了验证本文提出的对目标的空间位置和运动参数估计算法的有效性, 利用获取的目标质心点的位置时间序列对目标运动状态进行了跟踪仿真实验。

由于仿真的相似性, 本文只给出了推广卡尔曼滤波在O Z 方向的仿真结果, 如图4 所示。其中图4(a, b) 分别是观测噪声方差为3 个像素时目标在Z轴方向的位置p 和运动速度v 的估计误差曲线(150 次Mon te Carlo 运行)。其中目标的起始位置为(115, 1, 10)m , 速度为(110, 115, 215)m /s, 加速度为(0125, 011, 015)m /s2; 摄相机运动为实际中容易实现的且满足机动的条件, 其初始位置为( 010, 015, 010) m , 初始速度为( 015, 0175, 110)m /s, 运动加速度为(0125, 0105, 015)m /s2.


图4 推广卡尔曼滤波Z 方向(深度)的仿真结果

由仿真结果可见, 随着机器人车体的不断机动和滤波次数的增加, 目标位置的估计值在20 帧左右就可收敛到理论真值, 而且抖动很小, 可满足系统快速定位与跟踪要求。

6 结束语

本文对移动机器人的局部视觉定位方法进行了深入研究。二次成像法要求摄像机第二次成像时的位置要有较大变化, 从而导致利用序列图像所获取的目标位置信息误差较大。与之相比本文提出的定位方法可更精确地得到目标的空间位置和运动参数。这为移动机器人的路径规划、伺服跟踪等提供了更可靠的依据。

关键字:机器人  目标跟踪  视觉定位 引用地址:移动机器人视觉定位方法的研究

上一篇:机器人正浩浩荡荡走进生产线
下一篇:大型无尘室FFU控制及火灾报警监控系统

推荐阅读最新更新时间:2024-05-02 23:02

工业机器人的结构和原理
工业机器人已经渗透到各行各业,帮助人们完成焊接、搬运、喷涂、冲压等各项任务,那么你有思考过机器人是怎么做到这一些的吗?它的内部结构又是怎样的呢?今天我们就通过一段动画视频,带大家了解工业机器人的结构和原理。 机器人可以分为硬件部分和软件部分,硬件部分主要包括本体和控制器,而软件部分主要指的是它的控制技术。 本体部分 先来说下机器人的本体部分。工业机器人是仿照人的手臂来进行设计的。我们以现代机器人HS220型号为例,从外观来看,主要有底座、下框架、上框架、手臂、腕体、腕托等六个部分。 机器人的各个关节就和人类的肌肉一样,靠伺服电机和减速器来控制移动。伺服电机是动力的来源,机器人的运行速度以及负载重量如何,都和伺服电机有关。而减
[机器人]
XMOS与Synapticon就机器人建立合作伙伴关系
两家技术领导者携手支持机器人、自动驾驶汽车以及下一代工厂自动化 布里斯托尔和慕尼黑,2014年6月 – XMOS和Synapticon日前宣布建立合作伙伴关系,它将大大加速机器人、智能工厂和自动驾驶汽车等快速发展的领域对下一代运动控制技术的摄取。两家公司将在总销售收入为1700亿美元的工厂自动化市场以及快速增长的服务型机器人市场中合作,支持诸如Industry 4.0等新兴趋势。 此项合作伙伴关系包括:联合开发、支持和营销计划,它们将帮助设计师把多种计算单元、传感器和动作器件结合在一个新的应用类别之中,该应用通常被称为信息物理系统(cyber-physical systems)。 作为协议的一部分,XMOS将销售一系列
[工业控制]
安徽今年将推广应用工业机器人4000台以上
记者2月7日从2018年全省工业和信息化系统工作会议上获悉,安徽省今年将实施智慧经济开篇工程,将建设一批智慧医院、智慧养老院、智慧学校,打造一批线上线下结合的智能家居、智能穿戴等信息消费体验中心。2018年力争全省规模以上工业增加值增长8%以上,单位工业增加值能耗下降3.5%。 安徽 省经信委党组书记、主任牛弩韬描绘了今年安徽智慧经济发展的蓝图。今年, 安徽 省将主攻智能制造,确保全年推广应用工业机器人4000台以上,培育智能工厂20个、数字化车间100个。 同时,培育智慧产业。以中国声谷建设为引领,持续优化“一核两区多园”产业发展格局,深化部省市合作机制,发挥“中国声谷”产业发展基金作用,引优引强、扶优扶强,积极申办世界“声博
[机器人]
Crafty Robot推出纸壳版机器人 售价仅40美元
科学技术若想落地普及,价格必须要做到亲民才有可能。为了带动VR技术的普及,谷歌曾经推出了一款非常廉价的纸壳VR眼镜。 如今,这种纸壳的概念被Crafty Robot传承,他们提出了一系列纸壳版的机器人。这些机器人通过廉价的纸壳进行组装,并可以通过手机来进行控制,并实现一些特定的功能。这些机器人售价仅有40美元,其实更像是一种玩具。该系列纸壳机器人一共分为三款,每一款的造型不同,并且拥有不同的功能,比如有的可以帮你运送过来一杯咖啡。
[机器人]
智能前台机器人提供商睿沃科技获A轮5000万融资
2019 年 7 月 10 日,酒店智能前台机器人提供商杭州睿沃科技有限公司举行了融资发布会,宣布完成 A 轮 5000 万融资。本轮融资由博将资本领投,老东家起点资本及东霖资本进行了跟投。据悉,这是继 2018 年 11 月获得数千万天使轮后,睿沃科技再获融资。 会上,睿沃科技创始人兼 CEO 王琦与大家一同分享了睿沃科技的发展及未来愿景。在酒店智能前台机器人领域,睿沃不仅在市场上得到了合作伙伴的青睐,还得到了资本的关注及认可。王琦还同时宣布睿沃已经签约的酒店总数达到 10000 家,目前已经与包括首旅如家、东呈集团在内多个酒店业巨头达成战略合作,并参与了由中华人民共和国公安部、国家安全防范报警系统产品质量监督检验中心等多部牵头
[机器人]
机器人的基本结构类型,它的作用是什么
(文章来源:国际工业自动化网) 如果把“会动的手”和“会走的腿”结合在一起,将是怎样的智能机器人?有手有脚 复合机器人用处多多。在智能工厂中,越来越多的工业生产需要移动式的生产方案,不但完全自动化,而且具有更短的反应时间和更高的灵活度。 在这种条件下,固定式的操作机器人具有一定局限性,将移动机器人的行走灵活性与操作机器人的搬运灵活性有机融合形成的复合机器人,则能更好的应对这种变化。 复合机器人,就是将替代人胳膊功能的多关节操作机器人和替代人腿脚的功能的移动机器人组合而成,手脚并用,将两种功能组合在一起。其应用前景十分广阔,可用于3C、医疗、食品烟草、日化品等传统制造业的零部件组装,加工工件的搬运、装卸等作业,以满
[机器人]
3D打印“皮肤”助力机器人实现安全高效协同工作
在现代化的工厂中,人类与进行协作已成为不可或缺的现实。成功的人机交互是面向未来制造的关键。但怎样在这样的制造场景中保护操作人员的安全,并使得协作机器人高效运行,是工厂需要面对的挑战之一。   增材制造精益生产服务商裕克施乐(OECHSLER)与巴斯夫3D打印解决方案 Fward AM,通过3D打印技术为Kuka iiwa 协作机器人开发了一种3D打印“皮肤”。这一全新的解决方案,使人类和协作机器人能够安全的共享工作空间,并进一步优化了工厂的人机协作生产效率。     兼顾安全与效率 / 挑战 协作机器人(简称:cobots)越来越多地出现在制造业中,它们在共享区域与人类一起工作。在人机协作工厂中,避免协作机器人和
[机器人]
【维科杯】灵动科技参评“维科杯·OFweek 2023中国机器人行业年度应用创新奖”
维科杯· OFweek 2023中国 机器人 行业年度评选(简称OFweek Robot Awards 2023),是由中国高科技行业门户OFweek维科网及旗下权威的机器人专业媒体-OFweek维科网·机器人共同举办。该评选是中国机器人行业内的一大品牌盛会,亦是高科技行业具有专业性、影响力的评选之一。 此次活动旨在为机器人行业的产品、技术和企业搭建品牌传播展示平台,并借助OFweek平台资源及影响力,向行业用户和市场推介创新产品与方案,鼓励更多企业投入技术创新;同时为行业输送更多创新产品、前沿技术,一同畅想机器人行业的未来。 维科杯· OFweek 2023中国机器人行业年度评选“OFweek Robot Awards 2023
[机器人]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved