实现精密激光加工应用的运动控制新挑战

发布者:CuriousTraveler最新更新时间:2014-08-19 来源: 21ic关键字:激光加工  运动控制  速度规划  Softmotion算法 手机看文章 扫描二维码
随时随地手机看文章

激光制造技术是结合光学、机械、电子电机、计算机等科学与技术整合成的一项新技术,其已在现今社会中被广泛的应用。根据国际激光产业权威《LASER FOCUS WORLD》与《Industrial Laser Solution》于2013年初统计数据显示,全球激光产品销售已经回到2008年的水平并呈现增长的趋势。在全球激光材料加工领域中,近几年以金属加工的产值占多数,应用端又以激光打标与画线等属于表面处理的,占的最多为42%, 激光切割与焊接分占为第二与第三,合占整体材料加工应用的34%,其应用在汽车、航天航空、电子、机械、钢铁等金属钣金产业。而在GI (Global Information)于2012年底所发表的「Global and China Laser Equipment and Processing Industry Report, 2012-2014」报告书中指出,全球激光设备市场一般预计2011年将由2010年约74亿美金以14%的速度成长,2012则成长约2%。

 


图1 全球激光材料加工应用分布, 2009

(数据源: Indus. Laser Solution, Y09)


图2 中国激光设备市场分布, 2011

(数据源: Global Information, Y11)

以中国市场而言,激光设备的市场在2011年略微超过全球市场的成长率。从宏观经济的影响来看,虽然中国针对机械产业、重工业的激光加工市场缩小了,但小型、中型激光加工市场则在成长。由于中国在全球制造业上扮演中心的角色,其对激光机械的需求也相当巨大,尤其是汽车、半导体、电子产业具有很大的潜在性需求。中国的加工产业,精密金属零件加工及激光开孔加工占了加工服务整体的60%。

就应用层面而言,激光精密加工及切割已被应用在如太阳能晶硅切割、手机面板切割、半导体晶圆切割,Laser CNC等精密加工上面。对于运动控制产品来说,如何克服传统切割上的精度与微米处理;如何可以很容易切割任何图形,并达到其精度的平滑效果;如何对于极微小的图形也能不受空间限制而完成;如何可以调整能量强度来-满足不同材质上切割,而呈现出有层次感的效果,这些都是高端运动控制产品所面临的新挑战。

在本文中将讨论如何克服精密激光加工时所遭遇的新挑战,以及经实例证明的解决方案。

挑战一:激光切割精准度不佳

激光功率的调整大多都以频率 + 占空比方式控制,所以在位移上控制需要实时与精准的变换,不同的速度要有不同的功率,但在图形切割时都会产生不同的速度。在速度急剧下降,激光功率来不及变换时候,会导致有过融现象发生,如图一所示。

 


▲图一 功率切换不佳,导致过融现象

又因为激光控制大多以PWM的方式控制,PWM控制是以改变占空比的方式进行,所以对于固定速度会有较好的表现,但是如果速度提高,激光的频率会有来不及出光问题,则反应于切割时会产生烧融均匀度不佳的情况发生,如图二所示。

 


▲图二 切割均匀度不佳

挑战二:运动轨迹在高精度下不易达到

切割系统在移动中都需要讲究路径的准确性,所以马达的控制需要很好,这样切割的图形才不会变形,如图三、图四所示;因此控制如用开环 (脉冲, 步进)方式,会导致跟随度无法实时补正;如要达到高精度的要求唯有使用闭环 (速度, 扭矩)控制才可以达到要求。但是闭环控制需要经过PID调整,才会有较佳的跟随效果。然PID的调教往往需要花费很长时间,相当费时。

 


▲图三 转弯图形因无跟随补偿导致图形扭曲

 

▲图四 左图为控制过冲现象,右图为精准控制
挑战三:激光功率不易调整
目前切割的对象大多为多层材质(太阳能板、手机屏幕触碰膜),需要使用不同的功率进行切割;但因市场上的激光专用控制器的激光调整(VAO Table)都只有一组,在切割的功率上不易切换与调整,导致目前只能将切割路径依材质层重复切割,以达到所需的要求。然而如此将造成产能速度无法提升。
挑战四:速度规划旷日费时
由于激光加工图形复杂,简单的速度规划已无法满足加工切割结果,如手机触控模切割,在大多状况下是使用Spline曲线,或者是较长的几何线与弧线,如果无法精准做速度控制会导致机构加减速震动或图形严重变形(如过切与抖动),如图五所示。因机台设计人员大多仅提供图形点表(position),并无速度规划的数据,所以需要以人工操作方式规划速度,一方面设计流程旷日费时,且如遇规划错误时则需重新修正,也将造成产能无法提升。[page]
 

▲图五 速度规划过高,导致激光轨迹抖动
综合以上激光加工所遇到的瓶颈,新一代的运动控制卡是如何应对挑战?
实时呈现PWM控制能力
传统运动控制卡的PWM控制,均采用Duty单一控制方式,且通过软件控制,会面临无法实时且稳定控制PWM的时序。为了应对不同速度与不同图形,新一代运动控制卡采用更多种控制方式,包含频率调变(Frequency Modulation)、带宽调变(duty Modulation)、混合调变(Blend Modulation),如图六所示,此控制方式会由硬件控制来完成,此PWM能在各种切割速度下呈现出不同能量的表现,因此需建立一对应的能量表,以防止发生『过融现象』,此能量控制就称(VAO),如图七所示。
 

▲ 图六 Multi-PWM控制模式
 

▲图七 VAO
Multi-VAO方便动态切换
PWM采用Multi-VAO方式方便因切割材质的不同,达到深浅切割效果,让路径切割可以一次完成,无须重复路径再切割,如图八所示;大幅缩短生产时间,也提供生产效能。
 

▲图八 Multi-VAO
精确的运动轨迹跟随与简易PID调教
为了达到更好更精确的切割图形,新一代高端运动控制卡采用全闭回路(Full close loop)方式控制,并达到更小的Error count误差,在整体上相比一般控制卡有较高性能,跟随能力误差都相当小,如图九所示。为了达到高精确的跟随能力,需采用PID控制系统,但为了缩短PID调教时程,用户可通过Easy tuning的程序辅助,在短时间内调出最佳PID参数设定,如图十所示,可大幅提升性能,并简化操作性!
 

▲图九 最佳的跟随能力,紫色为追随误差
 

▲图十 Easy tuning tools
自动速度规划与图形路径规划
通过Softmotion的算法,新一代运动控制卡可根据用户所提供的图形数据,自动规划出优化图形路径规划,以缩短不必要的路径并提升切割速度与平滑度。如此一来可减少不必要的重复,大大的提升产能。
利用Softmotion内的前瞻规划(LookAhead)功能,当运动轨迹有较大角度的转折时,Softmotion会自动计算并提早降速,让机构可以顺应平滑的速度,平顺的完成轨迹的移动。
如此复杂功能的实现, 用户仅需要输入3个系统参数,分别是「最大速 (Max. Velocity)」、「最大加速度 (Max. Acceleration)」以及「容许误差量 (Tolerance)」(如图十二)。通过Softmotion的内部规划,即可达成复杂图形的轨迹运动。
 
 

▲图十一 LookAhead function
 
 

 
▲图十二 MotionCreatorPro 2 速度规划设定
实证绩效
通过以上几点新功能与新技术的研发,证明凌华科技新一代的运动控制卡在激光切割效果上有很好的表现,其速度规划都让机构有最佳的跟随性,使得整体加工误差被控制在极小范围内。
表一为实际测试设备规格如下,机构部分采用伺服马达(Servo Motor)及滚珠导螺杆(Ball Screw),最大运动速度为800 (mm/s)。经过凌华科技Easy-Tuning软件调试后,取得优化闭回路PID参数,使得整体机台的控制表现在±2误差单位 (在此物理量为5um)。

因加工是由4,500个小线段所组成的图形(如图十三),并特别取得四个弯角段及四段长直线段的误差数据(如表二),而整体激光加工的弯角轨迹误差小于2.2um,长直线端的轨迹误差更小于0.5um。

通过以下区域放大图片中,可清楚的看到激光能量是均匀地控制在一定范围,并显示实际加工轨迹是平滑无抖动。 也由此可左证凌华科技新一代的运动控制卡不仅能实现一般多轴插补运动,同时可实现在如激光切割等复杂的图形加工。而板上所实现的实时激光强度与回馈速度追随,更可有效节省系统CPU资源,并保证其加工效能。。[page]

▼表一 Test Equipment Specification

 

 

▲ 图十三 Easy tuning tools

▼表二 Trajectory Tolerance

 


▲R1 65倍放大 ▲R2 65倍放大

 


▲R3 65倍放大 ▲R4 65倍放大

 

▲ L 65倍放大

凌华科技高端运动控制卡PCI-8254/8258,具备高性能的运动控制表现,采用最新的DSP与FPGA技术,可以提供高速、高性能的混合模拟与脉冲序列运动指令。通过硬件实现闭回路PID含前馈增益控制,伺服更新率可高达20kHz。通过程序下载,最高可同步实时执行八种独立任务。 凌华科技免费提供易于使用的应用工具,包含丰富的运动控制应用函数,以及用户诊断及操作接口,可实现高速度、高精度的运动控制能力。借助凌华科技Softmotion技术,使用者大幅减少了开发的时间,并提供卓越的同步运动控制性能,可为机台设备商使用者节省高达25%至50%的成本。

总结

激光加工产业在未来将与人们的生活更为接近,如汽车钣金、手机及电视面板与外壳,甚至是医疗相关的假牙成型及人体有关的医疗激光等应用。激光加工的高效率也更能符合节能减排的要求。各国均已投入大量资源,以求在相关技术上有领先性的突破。以大中华地区而言,超过200家不同的激光设备厂商也争相抢食市场大饼,但在面对欧美高端设备时,软件实力的整合,将左右这些厂商的市场地位,提升加工质量争取更高的设备毛利率。凌华科技凭借超过10年运动控制技术,以及与厂商多年的应用合作经验,成功开发出同步性运动与激光控制技术,将复杂的速度规划及激光强度计算都置于运动控制卡片上,使得用户可以自行规划CAM的路径,但不需要担心复杂的数学计算,以达到同中求异的市场加值成效。未来加工路径也将由2D升级为3D制造,将执行如目前CNC工具机所做的加工应用,并会有更佳的加工表面工艺。

关键字:激光加工  运动控制  速度规划  Softmotion算法 引用地址:实现精密激光加工应用的运动控制新挑战

上一篇:长距离通信器S1503的应用编程原理
下一篇:用直扩MODEM和GPS实现的网型无线通信系统

推荐阅读最新更新时间:2024-05-02 23:07

PowerMILL在激光拼焊板拉延模加工中的应用
激光拼焊板是指将数张不同厚度、不同涂层、不同材质的钢板进行激光焊接成为一体的一种冲压坯料。经冲压成形可减少冲压和装配工时,可有效降低轿车10%~15%的生产成本,是目前世界上最先进的轿车车身制造技术。该文以四川宜宾普什模具有限公司制作的某地板模具产品为例,介绍了PowerMILL软件在不同料厚的激光拼焊板拉延模加工中的具体应用。 发明激光拼焊板车身制造技术初衷原本是为了再次利用冲压边缘材料,将其拼焊在一起使用,从而提高材料的利用率。但随着汽车业强调环境和安全性开始,该技术以减轻车重、节约原材料,增加轿车的抗冲击、防撞性能并存为目的而被广泛应用。PowerM工LL是一款独立运行的世界领先的以M系统,变余量加工是它的一大特点,通过改变
[嵌入式]
基于32位DSP及电机驱动芯片的悬挂运动控制设计
  随着32位DSP的普及,32位处理器已经成为控制领域的主流产品,与传统的微处理器相比速度更快、性能更强、资源丰富,更符合发展的脚步。TMS320F28027是一款32位的DSP,具有运算速度快、稳定性高的优点。本文利用TMS320F28027控制两个步进电机,从而使物体在平面内运动,实现物体在平面内可以任意地画指定的曲线和圆等。    1 系统总体方案的设计   图2为悬挂系统控制框图,以TMS320F28027为控制芯片,利用L298N 驱动两个步进电机。步进电机采用42HS4813A4,其额定电流为1.3A,步距角为1.8°,利用LCD-12864液晶显示被控制物的实时坐标。控制2个步进电机正向、反向转动来达到物体在平面
[嵌入式]
基于32位DSP及电机驱动芯片的悬挂<font color='red'>运动控制</font>设计
我国学者开发了新型5 nm超高精度激光光刻加工方法
中国微米纳米技术学会消息显示,近日,中国科学院苏州纳米技术与纳米仿生研究所张子旸研究员与国家纳米中心刘前研究员合作,在Nano Letters上发表了研究论文,报道了一种他们开发的新型5 nm超高精度激光光刻加工方法。 据悉,研究团队设计开发了一种新型三层堆叠薄膜结构。在无机钛膜光刻胶上,采用双激光束交叠技术,通过精确控制能量密度及步长,实现了1/55衍射极限的突破,达到了最小5 nm的特征线宽。 图片来源:中国微米纳米技术学会 此外,研究团队利用这种超分辨的激光直写技术,实现了纳米狭缝电极阵列结构的大规模制备。同时,该团队还利用发展的新技术制备出了纳米狭缝电极为基本结构的多维度可调的电控纳米SERS传感器。 值得一提的是,研
[手机便携]
我国学者开发了新型5 nm超高精度<font color='red'>激光</font>光刻<font color='red'>加工</font>方法
研华推出五款全新 AMONet分散式运动控制模块
研华科技,2013年4月——由于分布式系统朝向控制更多轴数及I/O组件的发展趋势,研华为此推出了全新AMONet分散式运动控制模块AMAX-1000系列,其中AMAX-1220与AMAX-1240为开放式类型并具备2轴/4轴 AMONet (Advantech Motion Network)运动从站模块,AMAX-1752、AMAX-1754及AMAX-1756为开放式类型32通道隔离数字输入及输出从站模块,分别具备32个数字量输入、32个数字量输出及16个数字量输入/16个数字量输出通道。 研华AMAX-1000系列均提供传输电缆线,客户可轻易连接松下Panasonic、安川Yaskawa及三菱Mitsubishi伺服驱动器。
[工业控制]
电动汽车运动控制系统的设计与实现
本文在现有电动汽车动力控制方法基础上,设计并实现了一种电助力转向与双后轮独立驱动相结合的模型电动车运动控制系统。该系统将电助力转向与双后轮轮毂电机驱动结合,省略了传统的离合器、变速器、主减速器及差速器等部件,大大简化了整车结构大大提高了电动汽车电气化程度和可控制程度,充分发挥了电动汽车高度电机一体化的优势。文中具体给出了系统各关键子系统的设计和控制方法,并通过台架实验证明了设计的有效性。 1 模型电动汽车系统总体构成   设计针对电动车( EV) 理想车况低速行驶,实现了一种双后轮独立驱动运动模型。系统结构如图1所示。 图1 电动汽车总体结构简图   模型车前轮控制采用电助力转向( EPS)系统,动力由两个后轮电机
[嵌入式]
浅谈我国工业运动控制技术发展状况
计算机技术和微电子技术的快速发展,推动着工业运动控制技术不断进步,出现了诸如全闭环交流伺服驱动系统、直线电机驱动技术、可编程计算机控制器、运动控制卡等许多先进的实用技术,为开发和制造工业自动化设备提供了高效率的手段。这也必将促使我国的机电一体化技术水平不断提高。 运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广
[工业控制]
如何在工业驱动器中实现精密的运动控制
如何在工业驱动器中实现精密的运动控制 乘坐电梯时,您肯定希望平稳安全地从一层到达另一层。在电梯驱动中,精密的运动控制使电梯能够停在指定位置,并平稳地减速直到完全停止。缺乏精密的运动控制可能会导致电梯误停在两层之间,这会让乘坐电梯的人感到头晕不适或不安全。 机器人、计算机数控机器和工厂自动化设备都需要通过伺服驱动器进行精密的位置控制,此外在许多情况下还需要进行精密的速度控制,以便正确地制造产品并维护工作流程。 工业驱动器的诸多方面都对实现精密的运动控制很重要,精密运动控制涉及实时控制设计中的三个基础子系统,即感应、处理和驱动 。本文将论述各个子系统的支持技术示例。 感应 缺乏精密的位置和速度感应,就无法实现精密的
[工业控制]
如何在工业驱动器中实现精密的<font color='red'>运动控制</font>
MCX314As型四轴运动控制器的原理及应用
1 引言 MCX系列运动控制器是日本NOVA公司设计的专用电路,其中MCX314As是NOVA公司最新的推出的4轴运动控制器,是对MCX314功能的改进和增强。 MCX314As以单个电路同时控制4个伺服系统或步进电机系统,可进行各轴独立的定位控制、速度控制,亦可在任意2轴或3轴中进行圆弧、直线、位模式插补。MCX314As能与8/16位数据总线接口,通过命令、数据和状态等寄存器实现4轴3联动的位置、速度、加速度等的运动控制和实时监控、实现圆弧、直线、位模式3种模式的轨迹插补,输出脉冲频率达到4MHz,每轴都有伺服反馈输入端、4个输入点和8个输出点,能独立地设置为恒速、线性、非对称S曲线加/减控制、非对称梯形加/减速控制方式
[工业控制]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved