基于现场总线的可重构数控系统的研究

发布者:asa1670最新更新时间:2014-12-29 来源: e-works关键字:数控  现场总线  现场可编程门阵列  可重构 手机看文章 扫描二维码
随时随地手机看文章

引言

    数控系统的开放性、可重构设计、模块化、网络化是当前数控技术领域研究的热点。开放式数控的技术本质是标准化,它的目标是把复杂的数控技术产品体系分割开,形成公认的模块化构件,让更多的厂商能够参与到数控技术的广阔市场中来。显然,模块化是开放式控制的原始基础和技术雏形,而实现这一目标的前提是共同制定一个产品的标准,准确地说,就是制定一个共同遵循接口的标准,以实现庞大数控系统架构的分解和集成。

    可重构数控的技术本质是柔性化。其实际上和原有的柔性制造系统一脉相承,只不过加入了管理学和运筹学的技术内容。不同的是,这种管理过程不是完全由人来主导,而是在人预先定义的决策下,由控制系统本身按照某种程度的自动化来实施的,其目标是系统实现从一种形态转变成另一种形态。重构后的系统,可适应新的制造环境,或提供更优化的效率,这正是柔性制造的核心内容。随着高集成度、高速度和具备硬件可重构能力的现场可编程门阵列(Field Programmable Gates Array,FPGA)器件的出现,利用其实现可重构数控系统是一条快速、简捷、可靠的途径。

    随着工业现场环境和控制对象本身的日益庞杂,数控系统所包含的控制器、驱动器、输入输出模块、传感器、执行器之间需要更多的信息交互。采用传统的模拟通道和并行连线的方式,不仅使得数控系统整体结构复杂,而且在信息交互密集的控制任务下,实时性无法得到保证,由此造成了数控系统控制能力的不可靠。另一方面,一些已经具备独立性的功能模块迫切需要建立自己的处理运算体系,需要单独的控制器和运算器的支持,以一种全新的优化方式和拓扑结构融入到数控系统的功能框架中,形成具备网络特征的数控系统控制网络,以使得数控系统在功能实现、现场配置、资源优化方面适应生产过程自动化和控制流程自动化的柔性、复合型和综合处理能力等多方面的技术和应用需求。

    由此,笔者提出了一种基于现场总线(Processfield bus—DP,PROFIBUS—DP)的可重构开放式数控系统。

1基于先进精简指令集微处理器和运动控制芯片的可重构数控系统平台的构建

    1.1 基于先进精简指令集微处理器和运动控制芯片的数控系统的设计

    由于采用精简指令集计算机(Reduced Instruc—tion Set Computer,RISC)架构的先进精简指令集微处理器(Advanced RISC Microprocessor,ARM)具有如下特点:①体积小、低功耗、低成本、高性能;②支持Thumb(16位)/ARM(32位)双指令集,能很好地兼容8位/16位器件;③大量使用寄存器,指令执行速度更快;④大多数数据操作都在寄存器中完成;⑤寻址方式灵活简单,执行效率高;⑥指令长度固定。因而,在本系统设计中,采用ARM的全数字式的控制,可以实现生产过程的数字化与高速高精度。

    为缩短开发周期,提高控制性能和系统可靠性,在系统设计中采用了运动控制芯片MCX314AS。MCX314AS是性能优良、接口简单、编程简单且工作可靠的运动控制专用芯片,该芯片能够控制4轴,并实现4轴3联动的位置、速度、加速度等的运动控制和实时监控,可实现直线、圆弧和位元3种模式的轨迹插补。所有插补计算由芯片完成,且多轴插补控制功能特别突出。

    系统硬件采用主从式双CPU结构模块化设计,分为基于ARM和现场总线的主控模块、基于MCX314AS的运动控制模块、基于FPGA的可配置模块、交互模块和网络模块。主CPU为ARM处理器,用于键盘、显示、文件存取、网络通讯等管理工作;而从CPU为MCX314AS运动控制芯片,专门负责完成复杂的运动控制的处理工作。

    MCX314AS与ARM的通讯是靠读写总线上的几个地址来进行指令和数据的传输。图1为基于这种思想开发的数控系统结构框图。

   

    图1 主轻系统结构框图

    1.2可重构制造系统的设计

    可重构制造系统能够通过重组或改变自身部件,快速调整生产能力和功能,以适应新的生产环境需要。美国国家研究委员会(National ResearchCouncil)发表了题为《2020年制造业挑战设想》的报告,其中将可重构制造系统列为优先考虑的领域之一。对一个制造系统来说,要想满足系统重构要求,它的子系统或部件应具有重构能力,而作为制造系统的关键单元,数控系统也必须具备重构能力。就重构角度而言,把能够通过重组或改变自身构件,快速调整控制能力,以适应制造系统整体重构需要的数控系统称为可重构数控系统。在可重构数控系统的研究方面,国内外主要采用软件的途径,而随着FPGA的出现,利用其构造数控系统的控制内核,并充分利用它的硬件可重构性,实现数控系统功能的重构,是可重构数控系统硬件实现的一条途径。

    按照文献[3]对可重构制造系统特征的定义,可重构数控系统具备模块化、可集成、可转换、可维护和可定制的特征。采用FPGA构建的数控系统能够很好地体现这些特征。

    (1)模块化可对数控系统按功能划分模块,然后采用硬件描述语言进行逻辑描述,制成专门的数控IP。

    (2)集成化使用专门的综合软件,将从其他IP供应商购买到的IP和自己开发的数控IP集成为数控系统。

    (3)可配置FPGA是基于静态随机存储器(Static Random Access Memory,SRAM)编程的,而硬件描述语言支持参数化设计,只要模块接口定义开放,也可以通过修改数控IP和整合不同的IP来改变设计,下载不同的配置数据以实现柔性化的设计。

    (4)可定制FPGA能够通过裁减和重整不同的IP,实现数控系统的功能定制,满足特定的加工要求,避免功能的冗余。

    (5)可维护性FPGA能够实现在系统编程和在系统重构,因而可以通过重新下载配置数据,实现系统本地或远程升级与维护。

    FPGA的上述优点可满足实现数控系统重构的硬件需要。当数控系统根据用户需求对伺服驱动或逻辑开关量等外部硬件进行扩展或重构后,FPGA在外部逻辑的控制下可通过对存储于E2PROM存储器中的FPGA配置数据重新下载,实现内部逻辑电路更新,从而使数控系统的逻辑电路也完成相应的重构。

    基于FPGA的可重构设计,可按需要实时地调整系统的控制逻辑,因而可大大增加计算机数控(Computer Numerical Control,CNC)系统的柔性和现场可重构性。如图2为基于FPGA的可重构系统的结构框图,系统可实现对数控镗床、数控钻床、数控铣床和数控车床的重构设计。[page]

   

    图2基于FPGA的可重构系统结构

    这种新型的数字逻辑系统从资源利用率来讲,可以动态重构地复用资源,资源利用率将成倍地提高,所需的硬件规模也将大大下降。同时,由于不是采用指令运算而是采用硬件复用原理,在某种意义上还有助于系统工作速度的提高。

2基于现场总线的数控系统的研究

    2.1 PROFIBUS总线简介

    开放式数控系统的两个重要内涵是自身接口的标准化、协议化和分布式体系的模块互连结构,这实际上与现场总线的技术纲领是一致的,即开放的、互联的接口规范和通信规范所组成的控制系统模型。因此,采用现场总线技术构建开放结构数控系统是一种必然的技术发展趋势,而且这种趋势定位在体系结构这个级别上,由此会彻底影响数控系统的设计、操作和配置等一系列特征,它正在触发传统数控技术领域内的重大变革,特别是伴随着开放式数控技术的研究和应用的升温,以数控系统为控制中心的控制系统和控制平台框架正在形成。

    PROFIBUS是一种国际性的开放式现场总线标准,目前已广泛应用于加工制造和过程控制,属于成熟的总线技术,世界上众多自动化技术生产厂家都为他们的设备提供了PROFIBUS接口。PROFI—BUs—DP是经过优化的高速廉价的通信连接,专为自动化系统和分散的现场控制设备之间通信而设计,特别是加工制造过程的控制,因此是分布式控制系统的高速数据传输的首选,而且PROFIBUS—DP定义了非常适合于数控系统功能实现的专用行规。所谓行规,就是根据应用的行业,对用户数据的含义进行了具体的、有针对性的定义和说明,从而使不同生产商的自动化设备只要遵循行规的格式描述,就可以实现互换。PROFIBUS—DP共有3个特别为数控应用定义的行规:

    (1)NC/RC行规(文件编号:3.052) 描述了如何通过PRoFIBUS—DP对机器人和数控机床机型进行控制,提供了详细的顺序图解,从高级自动化的角度描述了机械运动和过程控制的实现。

    (2)编码器行规(文件编号:3.062) 描述了带单转或多转分辨率的旋转编码器、角度编码器和线性编码器与PROFIBUS—DP的连接,并为这些设备分两种等级定义了基本功能和附加功能,如标定、中断处理和扩充的诊断。编码器正是数控系统中各类伺服电机和主轴电机测量位置和速度的核心测量传感器。

    (3)变速传动行规(文件编号:3.071) 描述了传动设备如何参数化以及如何传送设定值和收集实际值,它包括对速度控制和定位控制的必要规格参数规定基本的传动功能,又为特殊的应用扩展和进一步协议进化留有余地。

    可见,采用PROFIBUS—DP作为基础,进行分布式数控系统的设计是最合适的,而且符合未来技术的发展趋势。

    2.2 PROFIBUS—DP总线时间特性分析

    PROFIBUS—DP采用单一的总线存取协议,通过开放式系统互联(0pen System Interconnect,OSI)参考模型的第2层实现,包括数据的可靠性以及传输协议和报文的处理。在PROFIBUS—DP中,这一层被称为现场总线数据链路(Fieldbus DataLink,FDL),但实际上由介质存取控制(MediumAccess Control,MAC)子层来具体控制数据传输的程序,并且保证在任何时刻只能有一个站点设备发送数据。这也是PROFIBUS—DP协议设计旨在满足的基本要求。

    在复杂的自动化系统(主站)间通信,必须保证在确切的时间间隔中,任何一个站点都要有足够的时间来完成通信任务;而在复杂的主控制器和简单的I/O设备之间,应尽可能快速而又简单地完成数据的实时传输。因此,PROFIBUS—DP的总线存取协议包括主站与主站之间的令牌传递方式和主站与从站之间的主从方式。

    数控系统在处理某些连续任务过程中,对实时性的要求很高,如复杂轨迹曲线连续控制和现场关键信号的采集等。因此,必须对PROFIBUS—DP的时间特性进行分析,为数控系统设计提供依据。

    图3是一个单主站PRoFIBUS—DP系统在不同通讯速率下,总线通信循环时间随从站点数量增加的变化趋势。假设每个DP从设备有2 byte的输入和2 byte的输出数据,最小的从间隔时间是200μs,TID1一75 TBit,TSDR一11 TBit。显然,从站数量是决定总线循环时间的主要因素,但相对而言,高速传输受到的影响就很小。图4描述了总线上用户数据通讯流程和数据格式,以此为例来计算和分析总线上的信息循环时间。

    一个8位二迸制数(1 byte)按11位传输,电文头和尾由11 byte或9 byte组成,因此,当波特率为1.5 M时,1 TBit为0.666 7μs(1个8位二进制数-11 TBit-7.33μs);当波特率为12 M时,1 TBit为83 ns(1个8位二进制数-11 TBit—0.913μs)。

   

    图3 PRoFIBUS—DP单主站系统的通信循环时间

   

    图4 PRoFIBUS—DP用户数据交换原理

    一般考虑到现场传输环境和延迟,在实施中还要加上约10%~20%的余量。主从通讯信息循环时间的具体计算公式如下:

    TMc-(TSYN+TID1+TSDR+Hender+I×11+O×11)×Slaves。

    式中,TMc为信息循环时间,按位时间计;TSYN为同步时间,典型的为33 TBit;TID1为在主站的空闲时间,典型的为75 TBit;TSDR为在从站的站延迟时间,最小值为11 TBit,最大为60 TBit至800 TBit不等,典型的为11 TBit;Hender为在请求和响应帧中的电文头,198 TBit;I为每个从站的输入数据字节数;O为每个从站的输出数据字节数;Slaves为从站个数。[page]

    对于一个单主站的数控系统方案,包含1个CNC控制器主站、4个伺服驱动器从站(4轴控制)、1个主轴驱动器从站、2个I/O模块从站、1个人机交互(Human Machine Interface,HMI)单元、2个监控单元从站,则共有1个主站,10个从站。假定每个从站有10 byte的输入和10 byte的输出,则TMc-(33+75+11+198+110+110)×20=10 740 TBit。

    1.5 M波特率下,1 TBit需要0.66μs,从而10 740 TBit需要10 740×0.66μs=7.1 ms;

    12 M波特率下,1TBit需要0.083μs,从而10 740 TBit需要10 740×0.083μs=0.9 ms。

    一般来说,数控系统在进行位置控制时,要求位置环的闭合时间在2 ms以内,所以上面的系统设计在1.5 M波特率时,无法满足要求。因此,要么提高总线传输速度到12 M波特率的水平,要么简化从站的输入输出字节的数量。

    2.3基于现场总线的结构方案设计

    现场总线也是一种被标准化和通用化的串行工业总线形式,采用数据通讯的形式,总线接口精简为只有通信数据的发送和接收定义。而且现场总线具备长距离连接的能力,可以采用串级连接的形式,以方便组建分布式的数控系统和远程控制的数控设备。

    图5描述了基于PROFIBUS总线的数控系统拓扑结构方案,将数控系统简化为包含CNC控制器、人机接口(Human Machine Interface,HMI)系统、输入输出单元I/O、驱动器单元DRIVE和电机单元。每个模块具备独立的处理能力和智能特征,通过现场总线串联起来,成为总线拓扑结构上的一个站点。站点有主从之分,但都遵循完全一样的总线通信协议,因此,总线上传输的信号都表示数据而不存在专门的控制信号。这些数据信号必须经过特定的译码后,才能变成每一个模块单元可以直接在内部使用的数据。相对于传统的集中式数控系统结构,CNC控制器的地位发生了变化,它从核心模块变成了现场总线中的一个节点,虽然仍是整个系统中的控制主体,但通讯方式的改变使其在拓扑结构上与其他外围设备节点处于同等地位。CNC控制器可配置为现场总线数控系统中的主设备,负责系统任务的发起和控制数据的生成,以及采集监控其他节点模块的返回数据。

   

    图5基于PROFIBus总线的数控系统结构图

    各模块的功能描述如下:

    CNC控制器作为整个现场总线系统的主机,负责数控加工任务的规划、指令和数据的生成、计算和输出,负责网络系统的初始化、发起任务、状态查询、数据下载等工作。交互系统HMI则负责数控加工数据的输入,处理与用户操作和监控有关的系统功能,一般具备显示功能、键盘处理、用户数据传输,以及简单的数据处理功能。传统集中式数控系统中CNC控制器的CPU在担负起人机交互任务的同时,还要进行运动控制任务。这就要求必须用严格的实时任务调度来解决任务问共用处理器资源和共享数据可能产生的冲突。而分布式的设计方案则使HMI模块本身具备充分的处理和运算能力,它可以独立地向其他模块查询数据和发送数据,无须通过CNC控制器进行转发控制。这种数据的传输根据具体的现场总线协议不同而具备不同的封装形式,因此,只要符合该数据格式的传输设备都可以直接与HMI建立数据通讯关系,完成用户数据设定和所需数据的查询。这种模块化设计,可使HMI模块根据实际现场的需要具备多种形式,包括显示格式、数据类型、参数格式、图形化显示等众多功能,且都可以不依赖于CNC控制器而自由定制。

    I/O模块同样从传统数控系统中的I/O点转化成具备智能处理能力和通讯能力的控制单元。I/O智能模块单元由于具备自己专门的处理器,而从集中式数控体系中独立出来,它自身实现数字量的输出、外部信号的采集,以及这个过程中所涉及到的信号的转化和调整。I/O模块单元与HMI和CNC控制器通过现场总线可以直接建立联系,所有对I/O端口的操作都会以命令的方式进行传输,传输的周期和格式由现场总线具体的协议规范保证。现场总线对I/O模块的连接,通过一对屏蔽双绞线即可实现。因此,系统的连接被简单化了,可靠性和灵活性都得到了很大的提高。而I/O模块自身的处理能力可以独立执行对现场I/O端口,包括执行器和传感器的基本控制和实时事件处理,保证了现场设备的正常运行。

    数字伺服驱动器是数控系统操控电机运动的功率单元,是运动控制性能的关键部分,它是数控系统的运动控制执行器,是与电机等执行装置和机械设备的接口,负责将CNC控制器的任务和数据转变成运动控制输出,实现弱信号对强电流的控制。数字主轴驱动单元是数控系统的切削加工执行器,是与主轴电机等部件的直接接口,负责将CNC控制器对主轴的操作指令转变成转速或位置输出。目前,驱动器已从模拟式逐渐过渡到数字式,其主要标志是内部由模拟的开关器件和功率器件,转变为基于数字信号处理(Digital Signal Processing,DSP)的数字式、集成化智能控制器件。参数的整定和算法的实现,是从硬件电子电路转化为基于软件的实现,因此具备了更多的柔性和可配置性。驱动器接受控制器发送的位置指令(脉冲串)或速度指令(模拟电压信号),通过内部控制器处理,控制电机精确运转,并在伺服系统中通过位置和速度检测装置,实现基于跟随误差的系统精确随动控制。但是,目前驱动器与控制器的连接仍是以并行连线为主,很多离散的输入输出信号必须通过一对一的连接关系进行传输交互,当控制器和驱动器安装距离较远时,这种连接方式非常不方便。因此,采用数据通讯的串行连接方式,实现驱动器与控制器的信息交互,是简化系统结构、提高系统可靠性的有力措施。而现场总线正是实现这一接口方案的最佳选择,它将所有的连接信号封装成具有控制意义的特殊指令格式,在控制器和驱动器之间传输,也可以在HMI,I/O单元和驱动器之间传输,然后由各自模块的处理单元解码,转换成内部所需的各类控制信号。

    监控诊断单元是数控系统的状态监测与故障处理的独立模块,与现场的传感装置直接连接,负责实时采集现场设备关键部位的工作数据,并能进行预处理和应急处理,同时能够在必要时与CNC控制器建立信息交互。

    这便是全数字式的数控系统的基本要求,这样的设计使得系统的结构不仅在硬件上得到了统一化,而且在软件接口上也有了统一的形式,因为遵循相同的数据传输格式和编码解码过程,通讯接口单元可以被抽象出来,供每一个不同功能的数控控制实体利用。

3 结束语

    本文介绍的方案已成功应用于机床数控系统中,如TDNC320车床、TDNCXl5A铣床等。在此基础上,笔者快速重构出了可应用于一个4轴加工中心TDNC40A的数控系统,如图6所示。实验证明系统稳定可靠,可重构效果良好。

   

    图6数控系统用于4轴加工中心TDNC40A

    MCX314AS是一款功能强大的运动控制芯片,具有优越的4轴控制及插补功能,可大大减轻研发任务,提高研发速度,在短时间内得到了控制性能较高的数控系统。而ARM处理器的强大功能保证了该系统的高速、高精度和实时性数控加工。FPGA的应用解决了由于现场伺服电机扩展后的逻辑电路变化的问题,从硬件上实现了可重构性。现场总线是数控系统向工业通信技术领域内寻求分布式解决方案的一条很有前景的途径,其优势在于面向工业的标准化设计和市场产品线的支持体系。现场总线的应用实现了数控系统底层单元的灵活配置功能和数控系统的开放性。

关键字:数控  现场总线  现场可编程门阵列  可重构 引用地址:基于现场总线的可重构数控系统的研究

上一篇:基于RS-485总线的水轮机温度监测系统
下一篇:基于PCI总线的电视图像处理仿真系统设计

推荐阅读最新更新时间:2024-05-02 23:24

现场总线技术在数字化电厂中的应用
  一、数字化电厂及应用现场总线技术的必要性   何为数字化电厂,这个问题近几年来在业界得到了广泛的讨论。随着计算机技术和通信技术在电力行业的广泛应用,数字化已普遍应用于电力生产过程的决策层、管理层和监控层,数字化电厂也逐步成为现代化发电企业发展的方向,从目前对数字化电厂的认识来看,数字化电厂的网络结构可以划分为三个层次,即直接控制层(包括数据采集)、管控一体化层、管理决策层,而将三个层次连接起来的就是数据库和计算机网络。   管理决策层:MIS   管控一体化层:SIS AMS智能设备管理系统   现场控制层:DCS等   目前SIS是一个准实时监控系统,SIS侧重点是实时生产过程管理和监控,对实时性要求高,SIS的实时性要求比M
[嵌入式]
现场总线现场总线控制系统的定义
现场总线是顺应智能现场仪表而发展起来的一种开放型的数字通信技术,其发展的初衷是用数字通信代替一对一的I/O连接方式,把数字通信网络延伸到工业过程现场。根据IEC和美国仪表协会ISA的定义,现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络,它的关键标志是能支持双向、多节点、总线式的全数字通信。 随着现场总线技术与智能仪表管控一体化(仪表调校、控制组态、诊断、报警、记录)的发展,这种开放型的工厂底层控制网络构造了新一代的网络集成式全分布计算机控制系统,即现场总线控制系统(简称FCS)。FCS作为新一代控制系统,采用了基于开放式、标准化的通信技术,突破了DCS采用专用通信网络的局限;同时还进一步变革了DCS中
[嵌入式]
现场总线在调度自动化中的应用
1系统构成 基于现场总线的调度自动化系统主要由厂站端系统、调度端系统和通信系统构成。 (1)厂站端系统 厂站端(发电厂、变电站端)的监测与控制系统由前端智能单元、工控机、网络通信管理适配卡、专用调制解调器Modem和相应软件组成。 1)前端智能单元。前端智能单元一方面完成对各线路电流(A相、B相和C相)、电压(A相、B相和C相电压;AB相间电压;BC相间电压;CA相间电压)、三相/单相有功功率、三相/单相无功功率、三相/单相正有功电能、三相/单相负有功电能、三相/单相正无功电能、三相/单相负无功电能、三相/单相功率因数以及周波等电参量的测量;另一方面还要完成对各开关状态的检测和控制。前端智能单元一般采用16位微处理机系统,主要包括
[嵌入式]
Profibus-DP现场总线在精整生产系统中的应用
    华菱衡钢Φ340机组是衡钢自动化程度最高的生产线,整条生产线的自动化控制复杂,控制网络多。其自动化控制系统主要有ABB和西门子两大类,三大主机(穿孔机、连轧机、定径机)由ABB控制系统控制,管坯、环形炉、步进炉、精整线由西门子控制系统控制。所有控制系统中的网络应用得最多的为Profibus-DP现场总线网络。Φ340机组精整生产线的基础自动化采用Profibus-DP现场总线,组成分布式控制系统,实现精整区设备的自动控制。 1 现场总线Profibus在工厂自动化系统中的应用     一个典型的工厂自动化系统应该是三级网络结构,即现场设备层、车间监控层和工厂管理层。基于现场总线Profibus-DP/PA控制系统位
[嵌入式]
Altera发布单片FPGA高清晰互联网协议监视摄像机
Altera 公司今天发布业界第一款单片FPGA高清晰(HD)互联网协议(IP)监视 摄像机 参考设计,进一步为监视市场提供扩展FPGA解决方案。这一独特的解决方案采用了 Altera 低成本Cyclone III或者Cyclone IV FPGA以及Eyelytics和Apical的知识产权,支持AltaSens的1080p60 A3372E3-4T和Aptina的720p60 MT9M033 HD宽动态范围(WDR) C MOS 图像 传感器 。与使用传统数字信号 处理器 和ASSP的现有体系结构相比,这一全集成解决方案帮助监视设备生产商减小 电路板 面积,降低功耗,提高了灵活性,缩短了开发时间。   传统的数字 信号处理
[嵌入式]
基于FPGA的超高速雷达住处实时采集存储系统
摘要:采用服务器作为采集主控设备,利用多个硬盘组成磁 盘阵列作为存储设备,并制作了一块基于FPGA的超高速雷达信号采集PCI卡。系统以FPGA为采集的核心控制芯片,并在FPGA内部实现了64位/66MHz的PCI接口逻辑,无需专用接口芯片,简化了电路板设计,提高了系统的灵活性。该系统数据传输总速率可高达528MB/s,实时流盘速度可达150MB/s,存储容量可扩展至1000GB以上。 关键词:FPGA 超高速 实时 数据采集 数据存储 在超高速数据采集方面,FPGA(现场可编程门阵列)有着单片机和DSP所无法比拟的优势。FPGA时钟频率高,内部时延小,目前器件的最高工作频率可达300MHz;硬件资源丰富,单片集成的可用门数达
[应用]
基于NI智能FPGA板卡的通用数据采集系统设计
摘要:基于NI公司的智能FPGA板卡以及图形化编程软件LabVIEW设计并实现了一种通用数据采集系统。该系统与传统的数据采集系统相比结构简单、开发周期短、可靠性高、实时性好,并且对于不同应用场合,在FPGA逻辑单元足够多的情况下可以很简便地依据实际情况对其做相应调整,具有较强的通用性。 0 引言 数据采集是信号分析和处理的重要环节,在导弹半实物仿真过程中快速可靠的实验数据为提高仿真精度发挥着重要的作用。传统的数据采集系统各种数字、模拟信号相互交织,相应的外围电路庞大,接口复杂,要占用较大的电路板空间,无法满足系统的小型化要求,同时硬件成本也很高。当系统性能指标发生变化时,相应的功能电路和与之对应的隔离、滤波等电路以及相关程序都
[测试测量]
基于NI智能<font color='red'>FPGA</font>板卡的通用数据采集系统设计
利用FPGA在汽车、通信及AI领域创新
在当今快速发展的技术格局中,汽车、通信和工业市场处于数字化转型的最前沿。 由人工智能和机器学习驱动的先进技术开创了一个创新的新时代,技术先进的车辆重新定义了驾驶体验,5G 连接实现了无与伦比的处理速度,智能制造设施通过自动化彻底改变了工业工作流程。 在这些动态变化中,现场可编程门阵列 (FPGA) 已成为一项关键技术,为塑造自动化未来的创新解决方案提供支持。 FPGA 通过提供现场可重编程性、安全性、低功耗运行、高性能和实时网络来推动这场革命,以确保组织能够保持在数字化的前沿。 随着汽车、通信和工业组织中数字化的不断采用,利用 FPGA 功能和应用来释放创新的全部力量至关重要。下面,我们将详细分析技术进步如何增加这三个行业
[嵌入式]
利用<font color='red'>FPGA</font>在汽车、通信及AI领域创新
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved