基于LED灯的散热管理的低功耗设计

发布者:LovingLife2023最新更新时间:2015-02-06 来源: eefocus关键字:LED灯  散热管理  低功耗设计 手机看文章 扫描二维码
随时随地手机看文章
散热管理是新型LED灯中最困难、要求最严格且成本最高的设计部分。如果不进行充分的散热管理,将会造成照明失效或火灾等灾难性后果。不过,LED灯的散热管理是整个设计方案中最复杂、要求最严格且成本最高的部分。本文将探讨如何实施负温度系数(NTC)散热管理,以充分提高LED设计的安全性并大幅降低功耗。

传统的白炽灯泡中,不与任何东西直接接触的灯丝是唯一热源。而对于LED灯而言,LED即是光源,LED的散热直接与LED灯泡相接触。这种直接接触是受LED与驱动器电路的连接方式使然。为了实现散热,必须将热量从LED和驱动器电路中释放出去或者加以有效管理,同时这也是让LED灯保持长期工作的基本前提。

为了解散热管理的重要性,我们不妨设想这样一种应用,在壁灯或吊顶灯等通用照明插座上替代安装LED灯,并用墙壁开关来控制LED灯。由于壁灯或吊顶灯等大多数标准灯的散热主要依靠热对流或气流来实现的,因此这种应用的散热效果对于LED灯而言不太理想。

如果不进行有效的散热管理,则会带来需要频繁更换失效的LED灯或者导致建筑物火灾等灾难性后果。使用智能LED灯控制功能来监控LED灯的温度是较为简单的散热管理办法,同时由于LED灯能在温度升高情况下降低功率,因此安全性也将会得到大幅提升。

 

NTC散热管理

NTC电路的基本原理是通过监控LED灯的温度来提升LED灯的安全性并降低设计复杂度。当温度升高时,控制器减少流明并借以将LED保持在安全水平之内。换言之,当温度升高时,减少流明,反之,当温度下降时,则增加流明。

我们可通过检测NTC上的电压来检测LED灯的温度变化。检测到的电压与NTC的温度有直接关系,而NTC的电阻会随NTC及其周边电路温度的升高而下降。使用NTC确定温度有两种基本方法。

方法一:在系统强制实施已知电压的分压器电路中使用NTC,并随后测量NTC节点上的电压。NTC温度升高时,电阻减小。电阻减小将导致分压器比的变化。NTC节点的电压也会随温度升高而下降。

方法二、强制已知电流通过NTC,并测量NTC上的电压。NTC温度升高时,电阻减小。根据欧姆定律,电阻减小将改变NTC节点上的电压。如电阻减小而电流保持不变,NTC节点上的电压也会下降。

就改进操作、提高安全性而言,这两种监控LED灯温度的方法实施起来都很简单直接。图1是使用LED作为升温源头的这两种方法的原理图。

图1:使用NTC确定温度的两种基本方法。

 

温度过高还是LED故障?

LED灯的流明输出下降时,了解是否因过高的温度环境还是因为LED出了故障而导致LED输出下降至关重要。我们可用显示流明下降的指示器来确定下降原因。

图2所示系统中的流明下降是通过低功耗的红色LED指示的。当系统处于最大流明输出时,红色LED关闭;当LED灯温度升高时,流明输出则会下降,而流明输出下降时,红色LED即会开启。随着流明输出不断下降,红色LED的强度会相应增加。当流明输出下降到其最低强度时,红色LED将会完全开启。

图2

当流明输出处于最低强度而LED灯的温度仍然较高时,红色LED指示灯还可作为预警严重问题的报警器。在报警模式下,红色LED会在白色LED全部关闭的情况下不断闪烁。

图3的方框图显示了带有NTC和警报指示器的普通LED驱动器和L

 

ED控制器。普通LED灯包含的一个LED驱动器经配置后可通过LED提供一个设置电流。驱动器无法根据温度降低流明。驱动器提供的温度监控功能只能用于自身保护,并在温度极高的情况下完全关闭。[page]

LED控制器具有普通LED驱动器的全部控制功能,并能增强温度监控、通信和调光控制等其他功能的智能水平。方框图中蓝色部分是LED控制器的基本模块和组件。以红色显示的组件不是基本操作所必需的,但显示用于本文所述的NTC和报警功能。

普通LED添加NTC后,就能以可控顺序在温度达到预设限度时关闭LED灯。LED控制器右侧的两个红色组件(电阻和NTC)根据NTC操作部分所介绍的方法一进行配置。控制器向电阻元素提供精确的电压。NTC节点处的电压由控制器测量,以便转换为相应的系统温度。

报警机制可让LED灯显示温度升高并达到必须关闭以确保安全的程度。LED控制器左侧的两个红色组件(电阻和LED)是基本的指示灯LED配置。LED的亮度由PWM(脉冲宽度调制)信号控制。LED在PWM占空比提高情况下会增加亮度。

上述智能LED灯以另外一个LED指示灯的方式显示报警信息。LED报警只是智能LED能够采用的众多通信接口之一。此外还可采用PLC(电力线通信)、DMX(数字多路复用)和DALI(数字可寻址照明接口)等接口。

 

流明调节

图4的流程图显示了监控LED灯温度并在温度达到一定安全限度情况下调节流明大小的简单算法。流程图顶部的“加电启动——系统初始化”块是微控制器初始化块。墙壁开关打开后,LED灯加电,该块将配置LED灯进行基本操作,如流明输出和温度检测等。


图4:LED灯监控及调节流程图

“灯是否打开?”块检测灯是否由于温度过高而关闭。该简单的按位测试将明确灯是否打开。如果设为灯开位,说明灯打开,如果未设为灯开位,说明灯未打开。首次加电时,灯是默认打开的并设定灯开位。

“警报”控制块控制着温度过高且LED灯被控制器关闭后的开关序列。接下来的“灯是否打开?”块将再次开始检测序列。退出报警条件的唯一途径就是断开并利用墙壁开关再次供电。

接下来的“检测温度”块将检测NTC节点处的电压。NTC通常会随温度发生非线性变化,因此检测到的电压可根据对照表进行相关温度比较。该温度将用于后续两个控制块。

“安全温度”块用于测定LED灯的温度是否在安全范围内。当温度达到配置的最大值时,系统会将灯关掉。若温度低于允许最大值,系统将继续进行温度稳定性测试。

“关灯”块的作用是当LED灯温处于不安全范围时将灯关掉。接下来是“是否开灯?”块,再次重新开始检测序列。

“温度变化”块用于测定上次流明调节循环以来的温度变化是否需要提升或降低光输出。“温度增加”块用于测定温度是升还是降。由于前一个控制块已经测出自上次流明调节循环以来的温度变化已足够大,因此这里只有两个选择。

“最大流明”块用于测定LED灯是否设为最大流明输出。若流明输出达到最大值,则重新进入“是否开灯?”块,重新开始检测序列。

当上一个控制块测出流明输出未达到最大值,便会触发“流明升高、调暗指示灯”块。该控制块会根据初始化块期间的配置将输出调高一级,还会将指示灯LED调低一级,以使流明增加与指示灯变暗相匹配,然后再重新启动检测序列。

当“温度升高”块测出温度升高,便会触发“最低流明”块。若流明未达到预设的最低值,则流程导向“降低流明,调亮指示灯”块。若流明输出达到预设的最低值,则重新进入“是否开灯?”块,重新开始检测序列。

“降低流明,调亮指示灯”块会根据初始化块期间的配置将输出调低一级,还会将指示灯LED调高一级,以使流明减少与指示灯增加相匹配,然后再重新启动检测序列。

上述流程图显示了输入电源循环期间LED灯保持关闭的情况。流程稍作变动,就能提供灯关闭后监控温度、在温度降至安全限度内重新打开LED灯的序列。

关键字:LED灯  散热管理  低功耗设计 引用地址:基于LED灯的散热管理的低功耗设计

上一篇:立体声调频电台方案设计方案
下一篇:不间断式太阳能供电设备的设计

推荐阅读最新更新时间:2024-05-02 23:29

英诺达发布首款自研低功耗设计验证EDA工具
(2022年11月2日,成都)周三,英诺达(成都)电子科技有限公司发布了第一款自主研发的EDA工具——EnFortius® Low Power Checker(简称LPC),该产品主要用于低功耗设计静态验证,可以为集成电路(IC)工程师快速定位低功耗设计所带来的可能的设计漏洞和缺陷。 应用驱动下的集成电路大趋势 随着人工智能、5G、大数据中心、汽车等应用带来的IC功能和复杂度爆炸性增长,低功耗设计的重要性与日俱增。炬芯科技研发副总经理张贤钧在发布会上的发言表示:“在便携式、穿戴式以及无线化的产品趋势下,除了满足产品性能外,更大的挑战是产品的集成度越来越高,设计上需要更多的功能模块整合,更细致的电源划分,以及更弹性的动态电
[半导体设计/制造]
直接通过寄存器地址操作控制LED灯(STM32_01)
一、硬件基础 1、开发板:STM32-PZ6806L 2、MCU型号:STM32F103ZET6 (1)内核:32位 高性能ARM Cortex-M3处理器。时钟:高达72M,实际还可以超频一点。单周期乘法和硬件除法。 (2)IO口:STM32F103ZET6: 144引脚 112个IO,大部分IO口都耐5V(模拟通道除外),支持调试:SWD和JTAG,SWD只要2根数据线 (3)存储器容量:512K FLASH,64K SRAM (4)时钟,复位和电源管理: ① 2.0~3.6V电源和IO电压 ② 上电复位,掉电复位和可编程的电压监控 ③ 强大的时钟系统 -4~16M的外部高
[单片机]
直接通过寄存器地址操作控制<font color='red'>LED灯</font>(STM32_01)
【图文分析】与传统灯具相比 LED灯节省多少电费!
从头晕到照片曝光不足,频闪在很多方面给人带来影响。固态 照明 SSL已经被照明行业视为现在和未来的高能效光源,但在 LED 的周期性调整导致频闪这个问题上,它仍有不足。如果不加以解决,频闪会带来许多问题,有损精心设计的灯具和照明空间。理解频闪问题背后的基本知识将帮助建筑师和照明专业人员规避灯光频闪所带来的让人讨厌、甚至有害的影响。   什么是频闪?   关于频闪,最简单的定义就是指开关周期内光的不断波动。在美国,电流是通过频率为60Hz的交流电传送的,灯具的供电电压在开关周期内以正弦波的形式在波峰到波谷之间来回波动。因此,可能产生2倍于供电频率的频闪,也就是120Hz。如果没有合适的电子电路,比如镇流器、驱动或电源,光源就会产
[电源管理]
【图文分析】与传统灯具相比 <font color='red'>LED灯</font>节省多少电费!
STM32Hal库学习(一)CubeMx学习点亮LED灯
cubemx安装: MDK5安装+破解+pack 言归正传 新建工程选择是STM32型号,进入芯片页面 1.首先必备的SYS和RCC选择外部晶振、配置LED引脚,因板子而异PE5 PE6 2.在clock configuration中配置HCLK 72MHz 3.配置configuration中的GPIO 4.在project中配置路径名称,编译工具 生成工程文件,打开工程,编译文件,创建.hex文件烧录此时LED点亮,再编写一个流水灯程序 感觉直接生成的代码框架有点混乱,之前用的都是标准库,这个就感觉不熟悉还是先创建一个文件夹放自己的程序,然后编写自己的my_system.cpp,my_
[单片机]
STM32Hal库学习(一)CubeMx学习点亮<font color='red'>LED灯</font>
LED灯设计思路差异:通过减少芯片数降低成本
通过减少芯片数降低成本   取下 LED灯 泡的灯罩后,呈现在眼前的便是 led封装 (图4,图5)。封装有 LED芯片 的LED封装是决定光质量的重要部件,同时也是“LED灯泡中成本最高的部分”(多数LED灯泡厂商)。 图4:拆解A组LED灯泡(点击图片放大) 注释:东芝照明技术的7.2W产品采用发光效率较高的COB型LED。而三星LED的7.1W产品和勤上光电的7.5W产品均采用了普通的SMD型LED。最近,SMD中发光效率高的产品也不断增多,因此已经不能简单认为只有COB的发光效率出色了。部件的厂商名和部件作用为本站推测。 图5:B组LED的封装形态(点击图片放大) 注释
[电源管理]
<font color='red'>LED灯</font>设计思路差异:通过减少芯片数降低成本
锂离子电池用保护电路的低功耗设计
90 年代出现的锂电池是能源技术领域的一个重要的里程碑。和其它二次电池相比, 锂电池具有更高的体积密度和能量密度, 因此在移动电话、个人数字助理(Personal Digital Assistan t, PDA )、计算机等手提式电子设备中获得了极为广泛的应用。 一方面, 以锂电池为供电电源的电路设计中, 要求将越来越复杂的混合信号系统集成到一个小面积芯片上, 这必然给数字、模拟电路提出了低压、低功耗问题。在功耗和功能的制约中, 如何取得最佳的设计方案也是当前功耗管理技术( PowerManagement, PM ) 的一个研究热点。 目前研究得较多的是系统级的动态功耗管理技术(Dynam ic PowerM anagemen
[电源管理]
锂离子电池用保护电路的<font color='red'>低功耗设计</font>
proteus8.6仿真STM32按键控制LED灯程序
proteus8.6 按键控制LED灯闪烁情况 单片机源程序如下: #include led.h #include exti.h #include delay.h int main(void) { LED_Init(); //初始化与LED连接的硬件接口 EXTIX_Init();//外部中断初始化 while(1); }
[单片机]
proteus8.6仿真STM32按键控制<font color='red'>LED灯</font>程序
铁路交通信息系统PDA的低功耗设计
摘要:阐述在集成传呼功能、基于嵌入式处理器EP7211开发实现的二合一铁路交通信息系统PDA中,为了降低系统的功耗,从硬件和软件两方面采取的各种措施。这些措施基于一定的低功耗设计原则,具有普遍性,适合一般的嵌入式系统开发。 关键词:PDA EP7211 低功耗 时间复杂度 引言 PDA即Personal Digital Assitant(个人数字助理)的缩写,是近年来继寻呼机和移动电话之后,在国内市场迅速崛起的便携式电子产品。目前,国内传统性能的PDA产品经过前几年的高速发展后,市场需求基本饱和。不过,经过行业应用改造后的PDA产品,如文曲星、蓝火等已经在国内市场大显身手了。分析市场需求,我们研发了集成传呼功能的、专门面向
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved