利用眼图解决USB在布线中的信号完整性问题

发布者:skyhcg最新更新时间:2015-03-11 来源: dzsc关键字:USB  布线中  信号完整性 手机看文章 扫描二维码
随时随地手机看文章
    通用串行总线USB (Universal Serial Bus)协议从1.0版本发展到现在,由于数据传输速度快,接口方便,支持热插拔等优点使USB设备被越来越多人使用,目前,市场上以USB2.0为接口的产品越来越多,而绘制符合要求的PCB板在USB设备应用中起重要作用。但在实际生产设计中,由于USB的传输速率较高,而系统中电路板上元器件的分布、高速传输布局布线等各类参数,引起高速信号的完整性缺陷的,所以由PCB设计所引起的信号完整性问题是高速数字PCB(印制电路板)生产设计者必须关心的问题。本文通过Mentor信号完整性工具“Hyperlynx” 进行仿真分析,总结了一套高速电路设计提供布局布线的分析方法,串行总线以及其它高速电路的布线设计提供了理论依据。

    1 通用串行总线

    通用串行总线(USB)技术是为了弥补传统微机外部总线的不足而设计的,随着应用的扩展,USB的传输速率不断提高,USB2.0传输速度为高速480Mb/s。

    对于USB信号的传输,信号完整性是核心指标。USB总线应用差分信号传输数据,在传输过程采用NRZI编码。在上位机与USB设备的交互中,根据数据传输双工或半双工的状态不同,工作于差分态、静止态和单终端三种状态,其相应的电压或电压差也有所不同,传输协议以此判断设备速率和信号数据。

    在高速系统中,差分线上高速信号的压制检测阈值、断开检测阈值和共模电压也都有一定的范围要求,如表1所示。其中,共模电压典型值为200mV,另外,其差分输入信号电平必须满足高速接收眼图的要求。

    2 信号完整性分析

    2.1 传输线基础

    USB总线采用差分方式传输信号,两条传输线分别由不同的驱动器来驱动,其中一条用来传输本身的信号,另一条用来传输相应的互补信号,接收端信号为两者的电位差,用以识别传输线上包含的信息,从理论上来讲,两条任意的传输线都可以用来实现差分对。

    传输线内的信号在传输过程中,将即时信号外加电压与内通电流的比值称为信号的瞬态阻抗。当传输线沿途的瞬态阻抗为恒定值时,这个值就被称为传输线的特性阻抗,表达式为:

    高频频率范围内,R和G对特性阻抗的影响很小,这种情况下,传输线的特性阻抗为一个实数,公式被简化为:

    此时的传播速度则为:

    特性阻抗是阻抗匹配的一个重要参数。阻抗匹配关系到信号完整性问题,如反射、振铃等参量的控制。差分对匹配一般采用两种方式:π型和T型。

    2.2 高速USB信号的眼图

    眼图就是由多个周期的数字信号波形叠加而形成的图形,形状与眼睛类似,因此被称为眼图。数字信号的眼图能清楚反映互连设计是否导致不能容忍的误码率。在高速串行应用中,通行的做法是采用眼图验证串行链路是否满足系统的性能要求的。

    对于高速USB信号的发送和接收,USB使用眼图来描述其各个位在传输时所需的电压幅值和时间安排。图1展示了高速USB系统的几个眼图测试点。其中,TP1和TP4对应USB接口芯片的相应管脚(D+和D-),它们分别被焊接在集线器和USB设备的电路板上;TP2对应A型连接器的D+和D-管脚;TP3对应B型连接器的D+和D-管脚(对于束缚电缆,其也可能是直接连接在电路板上)。

    USB定义了6种眼图模板,其中定义在集线器TP2点或在USB设备(使用非束缚电缆)TP3点处的眼图模板,表示接收高速USB信号时所需的电压分辨力,如图2所示。[page]

    3 信号完整性(SI)仿真

    利用LineSim搭建USB2.0仿真原理图,如图3所示,其中包括主机控制器和外围设备控制器,设置了从主机到外围设备使用最大允许传播延迟,模拟一个28AWG带状电缆和5米的USB电缆,以及外围设备的布线。

    仿真得出差分信号的波形以及USB2.0接收端的眼图,如图4、图5所示。其图中弱的信号质量是由于带状线的阻抗不连续产生,因此,将模型结构中带状线的差分阻抗变化范围为115 ohms~92ohms。调整之后差分信号波形如图6所示,眼图如图7所示。

    由上图可以看出,经过调整带状线的特征阻抗,差分信号波形有了明显的改变,信号完整性问题得到了改善,眼图宽度和高度均有增大,平均上升时间、平均下降时间均减小,平均下降速率和上升速率即斜率均增大,但是就其仿真来看,所得到的结果仍和理想的结果有一段距离,继续改善模型结构图中其他相应模块的参数,最终仿真得出了满足USB2.0规范的眼图和差分信号,如图8和9所示。

[page]

    仿真数据结果为:

    Peak-to-Peak Voltage:1.58V

    Positive Overshoot: 229.4 mV;NegativeOvershoot: 198.2 mV

    Avg fall time: 969.697ps;Avg rise time:960.398ps

    Avg fall slew rate: 0.716 V/ns;Avg rise slewrate: 0.723 V/ns

    Eye Width: 1.804ns;High level: 565.2mV;Low level: -592.2 mV

    Eye Height: 862.6mV;High level: 565.2 mV;Low level: -592.2 mV

    通过以上仿真过程及结果得出:眼图的各项数据可以体现信号分析的性能指标。最主要的是通过眼的宽度、眼的高度、平均上升时间、下降时间、平均上升速率和下降速率(即斜率)这些指标能够体现信号的优劣程度。

    4 结论

    眼图作为数字设计的参考依据,图中的眼宽、眼高、过冲、单位间隔和门限交叉抖动为重要参数依据。峰-峰值抖动=门限交叉抖动/单位间隔×100%。为了使接收器能够正确地采样数据,眼图必须满足一定的高度和宽度,其具体参数由器件的特性决定,根据眼图,可以知道实际情况是否满足系统设计。

    特性阻抗通常由PCB的层叠结构和PCB走线宽度/间距决定的,首先明确好需要实现的信号的特性阻抗,确定关键信号的走线宽度/间距,选择好板材的层叠结构,通常微带线线宽、走线的铜皮厚度、微带线到最近参考平面的距离以及PCB板材料的介电常数共同影响其特性阻抗,而影响差分线阻抗的主要参数为微带线阻抗和两根微带线的线间距。当两根微带线的线间距增加时,差分线的耦合效应减弱,差分阻抗增大;线间距减少时,差分线的耦合效应增强,差分阻抗减小。这在实际布线中的到了验证,本文总结的USB电路布线设计方法可以为高速电路设计布局布线的分析方法,串行总线以及其它高速电路的布线设计提供理论依据。

关键字:USB  布线中  信号完整性 引用地址:利用眼图解决USB在布线中的信号完整性问题

上一篇:基于RS485总线通信的智能小区周界防越报警系统的设计
下一篇:利用眼图解决USB在布线中的信号完整性问题

推荐阅读最新更新时间:2024-05-02 23:31

USB协议深入分析 配置
前面已经介绍设置USB的设备地址,接着下来是做什么呢?其实有了设备地址后,主控器还会再次发送获取上面已经读取的设备描述符下来,如下: 80 06 00 01 00 00 12 00 然后USB设备也再次回应它,但这次发送的长度是0x0012了,不再是第一次64个字节长度了。 接着USB设备就返回下面的描述符给主控器,也就是第一次已经发送的设备描述符,如下: 12 01 10 01 00 00 00 40 00 80 00 80 00 01 04 2C 4A 01 这样分配地址之后,再次获取设备描述符成功了,接着下来就是主控器获取配置描述符。下面就是收到的配置描述符数据: 80 06 00 02 00 00 09 00
[单片机]
80C51和CH375的USB打印机驱动设计
摘要:介绍基于80C51和CH375的LPTUSB打印机驱动器的设计与实现方法,介绍USB总线的通用接口芯片CH375的特点及工作原理,给出80C51单片机通过CH375控制USB打印机的硬件设计及其C语言软件实现。利用该设计能够实现并行打印口数据在USB打印机直接打印,极大的克服了有些并口仪器必须连接并口打印机才能打印的弊端,可极大方便用户的使用。 关键词:CH375 LPT USB 打印机 80C51 单片机 引 言   本课题来源于北京普析通用公司的一个项目。由于公司现有单机版光谱仪器产品(如1810、T6等)采用的是并行口打印技术,而随着USB打印机技术的逐渐普及,并行口打印机越来越不好买到,而且有些用户的打印机只是U
[单片机]
Pico新型PicoScope 4000A示波器问市,配备超高速 USB 3.0 接口
Pico Technology 今天宣布推出基于 PC 的新型 PicoScope 4000A 系列示波器,它是对公司高分辨率、深度内存产品系列的第二代升级和扩展。PicoScope 4000A 系列示波器提供 2、4 和 8 通道型号,具有 12 位硬件分辨率(使用分辨率增强功能可达 16 位)、256 MS 深度捕捉内存、80 MS/s 采样速度的 20 MHz 带宽、高达 70 dB 的 SFDR 和内嵌 14 位可触发信号发生器,以及 80 MS/s AWG。超高速 USB 3.0 接口增强了仪器功能,并可与主机 PC 实现高达 160 MS/s 的通讯。 所有型号均可在广受欢迎的 PicoScope 6 用户界面上运
[测试测量]
Pico新型PicoScope 4000A示波器问市,配备超高速 <font color='red'>USB</font> 3.0 接口
ST 发布新STM32G0微控制器,增加USB和CAN接口和更大存储器
意法半导体发布新STM32G0微控制器,增加USB-C全速双模端口、CAN FD接口和更大容量的存储器 中国,2021年7月8日——意法半导体 STM32G0* 系列Arm® Cortex®-M0+ 微控制器 (MCU)新增多款产品和更多新功能,例如,双区闪存、CAN FD接口和无晶振USB全速数据/主机支持功能。 对于注重预算的应用,新的STM32G050超值产品线、STM32G051和STM32G061主流产品线增加了丰富的模拟功能和最大容量18KB 的 RAM存储器,以及多达 48 引脚且售价极具竞争力的封装。 此外,STM32G0B0 超值产品线、STM32G0B1和STM32G0C1主流产品线给STM3
[单片机]
ST 发布新STM32G0微控制器,增加<font color='red'>USB</font>和CAN接口和更大存储器
Diodes 公司的 USB 3.1 Gen 1/Gen 2 Type-C™ 控制器集成进阶功能
Diodes 公司 (Nasdaq:DIOD) 为领先业界的高质量应用特定标准产品全球制造商与供货商,其产品涵盖广泛领域,包括独立、逻辑、模拟及混合讯号半导体市场。该公司今日宣布推出 PI5USB30213A USB 3.1 Gen 1 (5Gbps) 及 PI5USB31213A USB 3.1 Gen 2 (10Gbps) USB Type-C™ 控制器,内含组态通道 (CC) 逻辑与 5V VCONN 源极。 透过整合交涉组态控制所需的逻辑,两个装置皆可作为下行用途端口 (DFP) 或源极进行运作;上行用途端口 (UFP)、汲极或作为双重用途端口 (DRP) 皆可作为源极与汲极数据与电源进行运作。 CC1 与
[半导体设计/制造]
USB:具有优良性价比的单台仪器接口
USB (通用串行总线)作为PC机的外设总线,由于具有串行传输、即插即用、可热插拔、配置方便、连接简单、兼有直流供电、传输率最高480 Mbps、价格大众化等优点而被广泛使用。每部台式 PC 机和笔记本 PC都配备2个以上 USB 接口 ,除了大量PC外围设备之外,便携音视频、移动电话、消费电子等产品亦广泛使用 USB 接口 。自从2001年 PC开始使用 USB 接口 ,它的安装数逐年增猛,2006年的安装数已超过20亿套,至今总安装数累计已超过50亿套, USB 接口 成为最普及的、也是成本最低的 PC外设 接口 。   近年来, USB 接口 获得测试测量仪器业和用户的认同,应用面从简单的附件式仪器扩大到中髙档台式仪
[模拟电子]
<font color='red'>USB</font>:具有优良性价比的单台仪器接口
莱迪斯和赛普拉斯联手推出新开发套件 简化USB 3.0视频桥接器的设计
该套件采用莱迪斯ECP3 FPGA和赛普拉斯FX3 USB 3.0外设控制器,提供了完整的高清视频参考设计,将在IDF 2014上亮相。 莱迪斯半导体公司和赛普拉斯半导体公司日前宣布,在Intel开发者大会(IDF)上推出一款具有完整参考设计的低成本开发套件,用于USB 3.0视频桥接器的开发。全新莱迪斯USB 3.0视频桥接器开发套件简化了USB 3.0音频和高清视频的集成,可用于诸多应用领域。该套件采用了莱迪斯的ECP3™ FPGA系列和赛普拉斯的EZ-USB® FX3™ USB 3.0外设控制器。 USB 3.0的5 Gbps带宽可顺利传输高清视频,而无需会降低图像质量的压缩过程。莱迪斯USB 3.0视频桥接
[嵌入式]
睿思科技发布新一代USB Type-C 与 USB PD3.0产品
今天,睿思科技发布一系列新一代USB Type-C与USB Power Delivery 3.0 产品,都通过了USB Type-C和USB Power Delivery 3.0 规格认证,可以满足笔记本电脑、移动设备、智能组件、设备扩展平台和各式接口设备之应用需求。 睿思科技首席技术官Bob McVay表示,借助多款布局在USB 电力快充领域内的产品,我们能够进一步思考如何提升我们产品的价值组合。 新产品简介: FL7031——下一代用于高规USB Type-C传输线的USB PD3.0 E-Marker ID控制芯片 采用极小DFN 封装(DFN2x2)的USB  PD3.0 E-Marker 芯片,可直接装入
[半导体设计/制造]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved