1 新能源汽车分类
在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。
1.1 消费者角度
消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“ ”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。
表1 消费者角度分类
1.2技术角度
图1 技术角度分类
技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。
2 新能源汽车模块规划
尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。
图2 三级模块体系
根据功能和控制的相似性,三级模块体系的部分模块可组成纯电动(含增程式)、插电并联混动和插电混联混动三种平台架构,例如纯电动(含增程式)由充电设备、电动附件、储能系统、驱动电机和齿轮箱组成。各平台模块的通用性较强,采用平台和模块的开发方法,可共享核心部件资源,提升新能源系统的安全性和可靠性,缩短周期、降低研发及采购成本。
3 新能源汽车三大核心技术
在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。
3.1 VCU
VCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。VCU通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;VCU具有整车系统故障诊断保护与存储功能。
图3为VCU的结构组成,共包括外壳、硬件电路、底层软件和应用层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。
图3 VCU组成
VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN )和VCU专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。
底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。
应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。[page]
表2为世界主流VCU供应商的技术参数,代表着VCU的发展动态。
表2 VCU技术参数
3.2MCU
MCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。同时,MCU具有电机系统故障诊断保护和存储功能。
MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。
图4 MCU组成
MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;结构部分采用高防护等级、集成一体化液冷设计。
与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU开发共同平台的发展目标,模块化软件组件以软件复用为目标。
应用层软件按照功能设计一般可分为四个模块:状态控制、矢量算法、需求转矩计算和诊断模块。其中,矢量算法模块分为MTPA控制和弱磁控制。
MCU关键技术方案包括:基于32位高性能双核主处理器;汽车级并联IGBT技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWM PMSM控制算法;高防护等级壳体及集成一体化水冷散热设计。
表3为世界主流 MCU硬件供应商的技术参数,代表着MCU的发展动态。
表3 MCU技术参数
3.3电池包和BMS
电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。
电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
图5 电池包组成
BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。
BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU 模块进行指令及数据的双向传输。BCU 可选用基于汽车功能安全架构的32 位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。
底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。
应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。[page]
图6 应用层软件架构
表4为国内外主流 BMS供应商的技术参数,代表着BMS的发展动态。
表4 BMS技术参数
4 充电设施
充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。
4.1 特斯拉充电方案分析
特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODEL($6.3420)S充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。
表5电池和充电参数
特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;集成的 10kW充电器,10小时充满;集成的20kW充电器,5小时充满;一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时; 45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。
特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。与在加油站加油需要付费不同,经过适当配置的MODEL($6.3420)S 可以在任何开放充电站免费充电。
特斯拉充电技术特点可总结如下两点:1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。 2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率0.8C,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;20分钟充到40%,就能满足续航要求,主要原因是电池容量大。
4.2 充电解决方案
图7充电系统组成
图7为一种可参考的新能源汽车充电解决方案,充电系统组成:配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端) 以及储能系统(储能电池与逆变器柜)。无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。
5 总结
从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。分析新能源汽车的模块组成和平台架构,详细介绍了三级模块体系中相关的执行系统和控制系统。分析VCU、MCU和BMS的结构组成及关键技术,以及世界主流供应商的技术参数和发展动态。对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案。
上一篇:眼观六路、耳听八方:汽车雷达系统成为主流配置
下一篇:变速箱速度设计的关键设计因素和解决方案
推荐阅读最新更新时间:2024-05-02 23:35
- 微灵医疗李骁健:脑机接口技术正在开启意识与AI融合的新纪元
- USB Type-C® 和 USB Power Delivery:专为扩展功率范围和电池供电型系统而设计
- 景昱医疗耿东:脑机接口DBS治疗技术已实现国产替代
- 首都医科大学王长明:针对癫痫的数字疗法已进入使用阶段
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- 兆易创新GD25/55全系列车规级SPI NOR Flash荣获ISO 26262 ASIL D功能安全认证证书
- 新型IsoVu™ 隔离电流探头:为电流测量带来全新维度
- 英飞凌推出简化电机控制开发的ModusToolbox™电机套件
- 意法半导体IO-Link执行器电路板为工业监控和设备厂商带来一站式参考设计
- Melexis采用无磁芯技术缩小电流感测装置尺寸