一、前言
交通灯控制系统是一个老掉牙的问题,各种方式的控制系统也不断产生。随着我国经济建设的不断发展,城市化进程不断加强,机动车辆也不断增多,交通信号控制功能不断扩展,其控制效率要求不断提高。基于PLC的交通灯控制系统能把可编程控制器的软硬件系统功能强大、可靠性好,逻辑编程方法简单,易于开发复杂控制系统、有丰富的扩展模块和联网能力和应用范围十分广泛的特点结合起来,使系统易于实现。
本系统采用日本松下电工生产的超小型FP0系列PLC作主控系统,其体积小但功能强大。我们按照现有十字路口的交通灯的设计方案来说明基于PLC的交通灯控制系统的方便性特点,也间接说明其在满足控制系统要求的功能扩展上也易于实现。
二、系统控制设计
1、系统功能要求
交通灯系统启动时,红、绿、黄灯按一定时序轮流发亮。首先,南北红灯亮,东西绿灯亮。南北红灯维持35s(可由用户设定),在南北红灯亮同时东西绿灯也亮,并维持30s,到了30s时,东西路灯闪亮,闪亮周期为1s。绿灯闪亮3s后熄灭,东西黄灯亮,并维持2s。到2s时,东西黄灯熄、红灯亮,同时南北红灯熄,绿灯亮。东西红灯亮维持25s(可由用户设定),南北绿灯亮维持20s。到20s时,南北绿灯亮3s后灭,南北黄灯亮,并维持2s。到2s时,南北黄灯熄、红灯亮,同时东西绿灯亮,开始下一周期的动作;系统可进行时间倒计时显示;当紧急状态要一侧方向通过时,可以使南北方向红灯亮,东西方向绿灯亮或者南北方向绿灯亮,东西方向红灯亮;在特殊情况下,系统可以人为根据各方向车流量,进行各车道通行时间的变更;在某时段如23:00至次日6:00车流量很少情况下,系统可以设定为各方向的只有黄灯闪烁。
2、系统设计
2.1硬件设计
硬件主要采用日本松下电工生产的小型FP0-C32CT型(带日历时钟功能)PLC,其I/O分别各有16个;根据系统要求需要进行I/O扩展要求,需要配一级扩展单元FP0-E16YT,其有16个输出。其I/0分配如表1,其控制输入输出接线原理图如图1所示。输出设备是电压高,功率大的设备,可由PLC输出给中间继电器,再通过中间继电器进行外部设备的输出控制。
表1 系统I/0分配表
输入 |
功能
|
输出
|
功能
|
X0
|
系统启动按钮SB1
|
Y0
|
南北红灯
|
X1
|
系统停止按钮SB2
|
Y1
|
东西绿灯
|
X2
|
南北方向急停开关S1
|
Y2
|
东西黄灯
|
X3
|
东西方向急停开关S2
|
Y3
|
东西红灯
|
X4
|
南北方向时间增加按钮SB3
|
Y4
|
南北绿灯
|
X5
|
南北方向时间减少按钮SB4
|
Y5
|
南北黄灯
|
X6
|
东西方向时间增加按钮SB5
|
Y20-Y2F
|
用于数码时间显示
|
X7
|
东西方向时间减少按钮SB6
|
|
|
图1 外部接线原理图
2.2软件设计
系统软件设计内容包括交通灯顺序循环控制、两方向的急停控制、数码时间显示控制、定时时段控制、各路通行时间变更控制几部分。顺序循环控制主要采用定时器指令编写,通过时间的顺序运行,来达到各路灯的按要求输出;通过配合各路急停开关的闭锁实现各方向的红灯或绿灯亮,当急停开关恢复后,又通过对定时器的内部经过值SV赋值,达到路灯进行切换恢复的目的,程序参考图2。我们可以通过PLC内部的日历时钟功能,对内部运行的时钟数据存储区进行取值比较,用类似急停控制的方法,实现某时段各方向的黄灯闪(程序略);由于前面采用的定时器独立的,故对于各路通行时间变更控制可以采用对定时器TM0对TM4的设定值SV赋值来改变,当然各方向时间也不能无限增大和减小,我们可以通过比较指令限制其在指定的数值范围(程序略)。通过对定时器TM0对TM4中变化的经过值EV,我们可以通过指令实时把他们转为BCD码,再由专门指令直接转换为七段码数值,用于对各方向时间的倒计时显示(程序略)。[page]
图2 顺序循环控制和急停控制的程序
三、系统扩展性
随着城市交通系统的日趋复杂和控制自动化程度的加大,使用该套PLC的交通灯控制系统,也能实现其自动控制的过程。如某些交通道路有六车道及人行道等,各道进行相应时序控制;有些交通道路采用智能化控制,根据车流量自动改变各方向的通行时间,并通过中央控制系统对各路口交通信号和系统参数进行远程监控和设置等;FP0系列PLC体积小,软硬件功能强,具有运行速度快、程序容量大、指令功能强、具有远程通讯功能等等,其可进行三级I/O扩展单元,最大I/O点数达128个,在通讯方面,FP0可以经RS232口直接连接调制解调器,在选用调制解调器方式下,FP0使用AT命令自动拨号以实现远程通讯;其也可以使用C-NET通讯单元,把多个FP0单元连接一起构成分布式控制网络,实现计算机监控,计算机与多台PLC连接图如图3所示。通过上面说明,使用基于PLC的控制可以满足交通灯系统硬件功能的扩展和分布式监控网络化的需要。
图3 计算机与多台PLC控制单元连接图
四、总结
通过调试,本系统使用PLC中的定时器分段设置,容易配合急停控制、各方向时间变更控制和倒计时间的显示,该交通信号灯的控制系统结构简单,接线容易,程序编写的控制算法灵活方便,在软硬件的维护上比较容易,可靠性也比较高。在可扩展性方面比较容易,易实现智能的交通监控和控制,满足根据道路情况和季节变化情况的通行时间的改变,减少各方向的车辆滞留,缓解交通拥挤情况,其经济和社会效益比较明显。
关键字:PLC 交通灯 控制系统
引用地址:
PLC在交通灯控制系统设计
推荐阅读最新更新时间:2024-05-02 23:36
日本研发新技术 帮助自动驾驶车辆识别150米外的交通灯
随着自动驾驶汽车的不断发展,此类车辆必须配备能够与现有基础设施协调工作的系统,并需要能够处理复杂的城市景观。例如,处理不同形状、大小和安装位置的交通灯;多种城市标志色;指示方向的箭头灯。为了让自动驾驶汽车安全地运行,就必须让其能够在很短的时间内、识别出远处的此类物体,进行理解,并做出相应的反应。 (图片来源:金泽大学) 为此,据外媒报道,日本金泽大学(Kanazawa University)的研究人员就研发出一种新方法,可以可靠地帮助自动驾驶车辆处理城市中复杂的交通状况以及指示方向的不同箭头。该系统可以让车辆识别150米外的交通灯,并平稳自然地减速或调整驾驶操作。 在车辆、行人和各种物体都密集的城市地区,自动驾驶车辆
[汽车电子]
基于51单片机的TM卡水表控制系统设计
0 引言 由于单片机的性价比高,因此在数据采集及频谱分析系统中往往取代DSP芯片而被广泛使用。在数字信号处理中,离散傅里叶变换(Discrete Fourier Transform,DFT)是常用的变换方法,它在各种数字信号处理系统中扮演着重要的角色。快速傅里叶变换(Fast Fourier Transfonn,FFT)并不是与离散傅里叶变换不同的另一种变换,而是为了减少DFT计算次数的一种快速有效的算法,且它们都是为了将信号变换到频域并进行相应的频谱分析。虽然FFT是一种快速的运算方法,但是为了计算N点的FFT依然需要Nlog2N次加法和0.5Nlog2N次乘法。当N比较大时,其运算复杂度对RAM的需求也是很大的。在本
[单片机]
基于PLC和触摸屏的双头盲孔钻机控制系统设计
O 引 言 双头盲孔钻机是一种在实体材料上进行钻孔加工的常用机床,广泛应用于模具、汽车、机床制造等行业的零件加工生产当中。传统的手工加工,不仅速度慢,而且还极容易出错,导致产品生产率低下。 可编程逻辑控制器(PLC)具有稳定性好,控制精度高等优点,常被当作控制器来使用;而触摸屏的加入,即增强了人机交互的空间,还能在一定程度上减少PLC的外部I/O点的使用以及减轻系统连线复杂程度,由二者组合在一起的控制系统越来越广泛地应用在工业生产的各个领域。 这里采用松下PLC(FP—X(260T)与威纶触摸屏(Weinview MT506)设计一个控制系统。实践效果表明,完全能够达到双头盲孔钻机的没计要求。 1工艺控制要求与控制系统组成 双头盲
[嵌入式]
三菱PLC加电输出禁止程序编程实例
在三菱PLC复电进入RUN状态后,经自检及通信处理进行输入采样,而后按用户梯形图程序指令的要求,对于输出线圈按照从上到下的顺序执行,对于同一线圈按照从左到右的顺序依次执行,动作不可逆转(使用跳转指令的情况除外),最后输出刷新,之后循环往复执行,直至停止。对用户程序的执行过程的理解是设计PLC用户程序的关键,下面以实例加电输出禁止程序为例,介绍用户程序循环扫描具体执行过程。 【实例说明】在实际控制工程中,可能遇到突发停电情况,在复电时,控制环境可能仍处于原先得电工作状态,从而会使相应的设备立即恢复工作,这极易引发设备动作逻辑错乱,甚至发生严重事故。为了避免这种情况的发生,PLC控制程序中需要时一些关健设备的控制端口(PLC榆出
[嵌入式]
基于DSP无刷电动机控制系统设计
0 引 言 众所周知,直流电动机调速性能好,但存在机械换向装置易造成换向火花、电磁干扰及需要定期维护等不足;同步电动机效率高,功率因数可调,但存在启动困难,重载时易振荡失步等问题。 随着电力电子技术、计算机技术和新型永磁材料的不断发展,为提出一种利用电子换向原理实现永磁无刷电动机控制创造了条件。特别是近几年推出的数字信号处理器(DSP)芯片,解决了原来微处理器结构复杂,单片微处理速度达不到实时系统控制的要求,为无刷电动机的复杂算法提供了软硬件基础。 1 系统结构和工作原理 无刷电动机属于一种自控同步电动机,它主要由DSP电机专用高速处理器芯片、转子位置传感器、逻辑驱动电路、功率电子开关、电流和电压检测等装置组成。DS
[工业控制]
PLC如何实现的实时数据采集呢?
数据采集传输对于后续企业进行分析和决策是十分重要的,而实时数据采集更能提升整体生产的认识度,从而采取到更加及时高效的措施。因此PLC实时数据采集成为企业的基础应用,那么PLC如何实现的实时数据采集呢? 协议解析 协议解析是PLC数据采集的第一步。不同品牌不同型号的PIC可能支持的通信协议是不一样的,如西门子、三菱、施耐德、欧姆龙、台达、汇川等。通信协议就像是不同语言一样,如果缺少解析翻译,肯定会缺少对话的基础。因此,如果没有对PLC进行协议解析,就无法获取PLC内部的数据,更不用提后续的数据上云了。 数据采集 协议解析后就能访问PLC内部寄存地址,通过点位表可以获取PLC执行的动作,进而了解设备的运行状态。对于企业来讲,P
[嵌入式]
基于语音识别汽车空调控制系统设计
现在汽车上使用的电器越来越多,驾驶员需要手动操作的电器开关也越来越多,不但增加了驾驶员的负担,还影响了行车安全。本文以STM32F103VET6(以下简称STM32)芯片为控制核心,采用高性能LD3320语音识别芯片,设计基于语音识别的汽车空调控制系统。该系统可以用语音有效控制汽车空调,减轻了驾驶员的操作负担,保证行车过程中的安全。 1 系统硬件设计 运用语音识别技术,结合各种传感器对车身内外的环境(如气温、阳光强度等)以及制冷压缩机的状态等多种参数进行实时检测,与设定参数相比较,微控制器经过运算处理做出判断,输出相应的调节和控制信号。执行机构经过实时调整和修正,实现对车厢内空气环境全方位、多功能的调节和控制。系统
[单片机]
“双碳”、“减排”背景下的电机控制系统能效提升思考
随着 “双碳”、“减排” 越来越受重视,作为耗电大户的 系统 应用正朝着 高效化、高频化、小型化、智能化方向发展 ,受可靠性、可维护性、体验影响, /PMSM/SRM 将持续替换有刷电机,市占率将进一步提升。
电机控制系统能效提升的关键在于 “一升一降” , 一升 是指从提升电机FOC控制算法在高/中/低速的PWM调制及载波频率自适应控制策略, 一降 是指尽可能地降低功率器件开/关所带来的损耗以及待机功耗。
电机更高效 ,就要求算力更强 ,采样速度更快,集成多路轨对轨模拟运放、、门级驱动。 电机更智能 ,则要求MCU具备双核或多核,其中一个内核用于电机控制,其他内核用于深度及 辨识算
[机器人]