基于M0TM固态继电器的汽车系统

发布者:温暖微风最新更新时间:2015-05-08 来源: eechina关键字:固态继电器  TWISTER  汽车系统  仿真器 手机看文章 扫描二维码
随时随地手机看文章
前言

汽车系统控制模块包括各种精挑细选的固态继电器,以便评测系统相对于指定负载、任务剖面和边界条件的运行可靠性。  
意法半导体的汽车固态继电器是一个智能电源开关,主要是采用M0TM 技术研制,额定负载驱动能力为0.1安培至数十安培。过载和短路容错功能采用限流和限制功率方法,以集成电路形式实现。这些功能的设计意图是保证汽车系统的任务剖面,避免故障检测发生错误,同时防止短路和过载冲击驱动器和线束。在瞬变条件下(灯泡接通涌流、电机起动电流等…),防护功能可能会降低负载性能。因此,评测带负载的驱动器功能是十分必要的。此外,要设定软件的故障处理性能,需要对诊断行为进行全面分析。

最后,智能功率执行器,例如,智能保险,本身就具有电流-时间曲线特性,要想优化线径,就必须测试这类器件。

功率芯片的参数,例如,工艺角参数、极限边界条件和负载参数,以及最恶劣条件,都是设计时需考虑的因素。在台架实验中,需要很长时间才能等到最恶劣条件重现,获得多个工艺角批次芯片。

TWISTER是意法半导体开发的一个仿真器,能够为开发人员提供精确的M0-5/M0-5E、M06、M07高边驱动器、Omnifets、H桥产品和最常用汽车负载的行为模型,对带负载的驱动器进行完整的系统级仿真。为展示该开发工具的功能和特性,本文将简要介绍智能驱动器的特性,并给出几个车身驱动器的评估实测。

1.    M0TM   智能固态继电器

高边驱动器 (HSD)、低边驱动器(LSD)和智能开关是为恶劣的汽车工作环境设计的半导体器件,能够承受所有的可能发生的故障状况,例如,短路或过载现象。同时,行业法规要求必须测试当错误、短暂故障和/或电磁干扰导致继电器关断时是否为零风险。评测结果必须符合汽车产品标准。智能开关的保护策略可能影响负载性能,因此,产品选型不仅考虑开关在稳态时的行为,还要考虑其在保护电路激活时的瞬间行为表现。 

1.1.    短路保护
两级限流功能和一个功率限制功能确保开关在短路和过载条件下可靠工作,达到AEC-Q100-012汽车产品质量标准:
•    选择限流参数高值(ILimH),以符合目标负载的涌流限制,同时,还应避免在涌流或短路期间电流密度过大,导致在功率MOSFET源极金属层上引起电迁移。   
•    限流低值(ILimL) 约是IlimH的30%,当短路持续存在时,激活限流低值机制,以终止电迁移效应。 
•    功率限制功能用于限制短路或过载期间的最大平均功率,避免开关金属层温度瞬间骤变超过60K。快速热瞬变可能在焊点和源极金属层上引起热机械应力。为确保汽车任务剖面,最大60K的 TJ热变是意法半导体可靠性设计原则。

1.2.    负载兼容性 

限流和功率限制功能可导致车灯开启延迟,多数车企能够接受在最恶劣情况下车灯开启延迟最长10ms的方案,评测最恶劣情况需要使用工艺角批次参数。涉及的主要参数包括限流最小值(ILimH min)、在TFILAMENT=-40oC时的灯泡涌流最大值。 

当驱动电机、阻性负载和感性负载时,需要给予类似的考虑。这些负载的涌流很大,可能使用短驱动脉冲,所以需要检测驱动器的尺寸,主要是在瞬变条件下。

1.3.    电流-时间曲线
短路和过载的反应时间与短路电阻是函数关系。为什么保护策略要采用限流和限温两种策略呢?因为反应时间不仅受到芯片参数离散的影响,还受到温度边界条件的影响(见图1)。

 
图1: 电流-时间曲线与短路电阻是函数关系,红色区域代表因芯片参数离散和温度边界条件而引起的所有的可能的变化。

2.    TWISTER概述

图2所示是Twister图形用户界面的主窗口。直接点击相应的图标即可选择并设置电源电压、线束、汽车负载和控制输入。每个输入输出值都可选择,并绘制成可缩放的图形。数据导出功能支持多种文件格式。下面是该仿真环境的主要功能:
•    选择功率芯片和相关参数(见图4)
•    设置 PCB散热系统温度(见图4) 
•    设置电池电压
•    设置电池极性接反电压 
•    设置输入电压 
•    设置环境温度 
•    选择负载 (R, RC, RL/电流/功率分布图、直流电机、12V & 24车灯) 
•    设置仿真时间 
•    绘制与电和温度相关的所有输入输出变量曲线图
•    评测相对于负载阻抗的电流-时间曲线

 
图2: Twister主窗口: 点击芯片图片,即可打开芯片、负载、输入、Vbat电压选择菜单

3.    负载兼容性评测示例

本示例测试一个驱动10W转向灯的140m 高边驱动器VNx7140Ax,在所有最恶劣情况下,测评必须满足下列条件:

结温 < 热关断阈值 

1)    导通< 10ms时的功率限制时长 
图3所示是评测电路连接配置图,而图4是芯片选型窗口,用户可在这里设置最恶劣条件下的芯片参数和边界条件。
当环境温度是规定的最高温度时,如果热关断阈值和ILimH 限流参数高值均最低的工艺角批次芯片导通,就会发生结温达到热关断值的重大风险(见图5) . [page]

 
图3: MO-7VNx7140Ax 转向灯高边驱动器最恶劣情况评测电路连接配置示例.

 
图4: 芯片选型菜单中最恶劣条件评测参数设置 

在导通时引起最长功率限制时间的最恶劣条件有两个特征:环境温度= -40oC,产品数据手册中的最小 ILimH值。灯泡涌流在-40oC时最高。两个并联的H6W 灯泡的涌流可达到15A。这个参数结合ILimH=8A将在导通时产生最长功率限制时间, 结果车灯开启时间被延迟。如图6所示,在最恶劣条件下,VNx7140AX功率限制时间在3ms(3ms << 10ms)范围内。

图7所示是在Twister上进行最恶劣条件评测的全部评测结果。如果需要,用户可向意法半导体车身产品部索取给定情况的概率评测静态数据。

 
图 5: TAMB=105oC时的VNX7140AX行为。在TTSD=167oC和ILimH=8A时发生热关断 (根据产品销售数据,概率 < 0.1ppm)

 
图 6: VNX7140AX驱动2支H6W转向灯的IOUT& TJ 仿真曲线(ILimH=8A, TAMB=-40oC)。 

4.    保护分析和线径优化

图8中的红色曲线代表20m MO-7高边驱动器VND720AJ反应时间测试数据。将这条在Twister中取得的曲线导出后并另存为Excel表格文件,然后,将其分别与21W+21W+5W车灯和线径0.5 mm2 铜导线的电流-时间曲线对比(见图8)。这个分析的目的是检查负载、驱动器和线束之间层级是否正确。这里必须说明的是,在没有外部器件帮助的条件下,高边驱动器的 IRMS电流始终低于线径0.5 mm2 铜导线上的最大IRMS电流,因此,在任何情况下,该芯片都能保护线束。此外,还可以通过软件交互进一步控制电流,实现t>1s的延迟(图8中的虚线)。在这种情况下,通过微控制器控制,该芯片可以保护线径0.35mm2 的铜线。 

 
图 7: VNX7140AX重启后热保护评测。注:M0-7高边驱动器还能设成锁保护模式,当TJ 达到 TTSD时,芯片将被锁保护。

 
图 8: VND7020AJ M0-7固态继电器和灯泡及线径的电流时间曲线比较

5.    结论

Twister是一个独立的好用的功率芯片仿真器,准许用户查看所有可能的边界条件和芯片参数对设计的影响;热电混合仿真准许用户评测MOTM驱动器在最恶劣条件下的性能表现。此外,Twister还准许用户利用目标保护策略计算并优化线径。
关键字:固态继电器  TWISTER  汽车系统  仿真器 引用地址:基于M0TM固态继电器的汽车系统

上一篇:汽车照明的LED驱动器要求及常见方案
下一篇:汽车门禁射频接收器阻抗匹配介绍

推荐阅读最新更新时间:2024-05-02 23:40

稳健设计采用Saber仿真器提高系统可靠性
稳健设计概念   “稳健设计(Robust Design)”是一种通用的、并经过实践验证的开发理念,致力于提高流程或产品的可靠性。为了提高可靠性,要求稳健设计原理在早期就成为设计周期不可分割的组成部分,其目标是让最终产品免受那些可能对可靠性产生不利影响的参数。如图1所示,通用的稳健设计方法要求在设计过程中对信号、响应、噪声和控制这4项参数予以考虑 。   在当前的系统设计环境中,这4项参数有其特定含义。   1.信号参数   信号参数是指系统输入信号的特性参数。这方面需要考虑的参数有很多,包括信号的类型(模拟、数字等)、幅值、频率、频谱等。设计师必须在创建有效的系统设计前对这些特性予以掌握。信号参数决定系统输入级的结构,输
[模拟电子]
稳健设计采用Saber<font color='red'>仿真器</font>提高<font color='red'>系统</font>可靠性
STM32入门笔记1
STM32入门笔记:STM32+ST-Link ST-link仿真器跟一块最小系统的STM32开发板都买回来好久了,到最近终于有空开始动手学习。 --|||在ST-Link配的光盘里有个J-Link的介绍文档跟驱动程序,结果我就看完把驱动一装,连上开发板按着教程开始想烧录个程序进去试试。结果一直无法识别到J-Link设备…我居然还上旺旺找买仿真器的那个卖家问为什么我发现不了设备,我的仿真器上面的灯不亮?卖家问了下情况后很纳闷:你买的是ST-Link当然用J-Link的驱动程序连接不到设备啦…当时自己也被自己这个乌龙给雷到了。 好吧,又接着问了一下,原来ST-Link不用装驱动,但是用ST-Link无法像使用J-Link
[单片机]
汽车巡航控制系统简介
  巡航控制系统是使汽车工作在发动机有利转带范围内,减轻驾驶员的驾驶操纵劳动强度,提高行驶舒适性的汽车自动行驶装置。巡航控制系统英文为cruise control system,缩写为CCS。巡航控制系统又称为巡航行驶装置、速度控制系统、恒速行驶系统或巡行控制系统等。   巡航控制系统自1961年在美国首次应用以来,已经广泛普及。在美国大多数轿车上均装用了过航控制系统。日本和欧洲生产的轿车装用巡航控制系统的比例也越来越高。我国一汽大众生产的奥迪A6、上海大众帕萨特以及广州本田雅阁也装了巡航控制系统。   在大陆型的国家,驾驶汽车长途行驶的机会较多,在高速公路上长时间行驶时,打开该系统的自动操纵开关后,巡航控制系统将根据行车阻力自动
[嵌入式]
汽车安全性能亟待升级 嵌入式系统把关护航
  汽车安全离不开安防,例如,只有通过安防措施保护制动ECU(电子控制单元)固件的完整性和真实性,才能保证汽车的制动安全,防止恶意修改固件等威胁。   安全需要安防的另一个示例是板载网络,板载网络将关键数据从传感器传输到制动ECU。只有通过安防措施防止板载网络抵御修改数据、注入消息和拒绝服务等威胁,才能保证制动ECU及时收到正确的传感器值。   人们希望在汽车中推出Android™或MeeGo™等开放的软件平台,从而出现了一个全新的安全和安防挑战:为了允许通过按钮与用户进行交互并为导航应用从汽车提取当前车速、剩余油量、行驶里程、位置等信息,软件平台及其应用程序需要参与板载汽车通信。然而,需要保护汽车不出应用故障。虚拟化以及
[嵌入式]
智能网联汽车操作系统发展现状及挑战
软件定义、数据驱动”下操作系统及其硬件平台的耦合将为5G、车辆大数据分析、车云计算、网联云控、信息安全等提供应用和融合载体。
[嵌入式]
智能网联<font color='red'>汽车</font>操作<font color='red'>系统</font>发展现状及挑战
汽车控制器的电源管理系统
供电系统 为了实现对上述几种电子器件供电,汽车控制器需要一个供电管理系统,即电源管理系统,如下所示: 上面就是汽车控制器的电源管理系统的一个基本介绍,总结下来就是: ·微控制器:汽车控制器中的微控制器是整个系统的核心,需要提供稳定可靠的电源。通常情况下,微控制器的电源电压为1.3V,3.3V和5V,需要通过电源管理系统提供。 ·传感器:汽车控制器中的传感器有多种类型,例如温度传感器、压力传感器、位置传感器和转速传感器等。这些传感器的供电电压范围通常在3V到5V或更高一点的12V,需要通过电源管理系统提供。 ·执行器:汽车控制器中的执行器有多种类型,例如电机执行器、电磁阀执行器、舵机执行器等。这些执行器的供电电压范围通常在3V到
[嵌入式]
<font color='red'>汽车</font>控制器的电源管理<font color='red'>系统</font>
基于单片机的汽车防盗报警系统的设计与实现
随着经济的高速发展,汽车已经开始进入千家万户。与此同时,汽车失窃事件也在逐日增加。汽车的失窃对于车主而言是一种巨大的损失。因此,汽车防盗系统和汽车定位系统拥有了巨大的市场需求。 当前市场上部分车辆防盗系统存在的功能单一,体积大,能耗高等缺点,使得车辆仍然存在一定安全隐患。因此,如何对现有汽车防盗报警装置进行改进,使其能更好地实现报警功能,保护人民的私有财产,引起了众多学者与电子产品厂商的关注。因此,文中基于单片机,利用GPS/GPRS技术设计了汽车防盗报警系统,实现了汽车定位功能的可靠性及报警功能的实时性。 1 总体设计 汽车防盗报警系统功能复杂,采用模块化的设计方案,主要由4个部分组成,如图1所示。防盗信息采集模块采集到报警信
[单片机]
基于单片机的<font color='red'>汽车</font>防盗报警<font color='red'>系统</font>的设计与实现
单片机的单CPU仿真器的设计
摘要:本文基于对8051单片机存储空间结构的深层次分析,提出了一种基于单片机的单CPU仿真器设计方案。该方案实用廉价,工程实践性强,可用于设计新的教学设备。 引言 单片机以它的廉价、体积小、可塑性强、稳定性高的特性,有着广阔的市场前景。 在用单片机开发产品时,虽然许多厂家设计了可编程ISP单片机,但是从安全与便捷方面考虑,单片机仿真器仍然是开发人员不可或缺的工具。单片机仿真器在产品开发阶段可用来替代单片机进行软硬件调试,从而迅速发现、纠正程序中的错误,大大缩短单片机开发的周期。但实际中仿真器过于昂贵,因此,设计制作出一款廉价且实用的仿真器有着广泛的市场。 传统的单片机仿真器硬件系统一般有三种实现方法。一、采用专用仿真的单片
[单片机]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved