数字电容隔离器的磁场抗扰度

发布者:HeavenlyJoy444最新更新时间:2015-05-19 来源: eechina关键字:磁场抗扰度  隔离器  数字电容 手机看文章 扫描二维码
随时随地手机看文章
数字电容隔离器的应用环境通常包括一些大型电动马达、发电机以及其他产生强电磁场的设备。暴露在这些磁场中,可引起潜在的数据损坏问题,因为电势(EMF, 即这些磁场形成的电压)会干扰数据信号传输。由于存在这种潜在威胁,因此许多数字隔离器用户都要求隔离器具备高磁场抗扰度 (MFI)。许多数字隔离器技术都声称具有高 MFI,但电容隔离器却因其设计和内部结构拥有几乎无穷大的 MFI。本文将对其设计进行详细的介绍。

基本物理定则

诸如电动机的电源线等带电导体,其周围便是一个由流经它的电流形成的磁场。应用右手定则(请参见图 1),我们很容易便可以确定该磁场的方向。该定则的内容如下:用右手握住导体,然后拇指指向电流的方向,这时环绕导体的手指便指向磁场的方向。因此,磁通线的平面始终与电流垂直。

图 1 显示了 DC 电流的磁通密度 B。就 AC 电流而言,将右手定则用于两个方向,磁场和 AC 电流都随同一个频率 f 而变化:B(f) ~ I(f)。磁场(或者更加精确的说法是磁通密度及其相应磁场强度)随导体中心轴距离的增加而减弱。这些关系可以表示为:

 
以及
 
其中,B 为以第平方米伏秒 (V•s/m2) 表示的磁通密度,μ0 为自由空间中的磁导率(计算方法为 4π × 10–7 V•s/A•m),I 为以安培为单位的电流,r 为以米为单位的导体距离,而 H 为以安培每米 (A/m) 为单位的磁场强度。

图 1 右手定则
 

磁场线穿过附近导体环路时,它们会产生一个 EMF,其强度大小取决于环路面积和通量密度及磁场频率:
 
EMF 为以伏特为单位的电势,f 为磁场频率,而 A 为以平方米 (m2) 为单位的环路面积。

所有隔离器都有一定形状或者形式的导电环路,以让磁场线穿过并产生 EMF。如果强度足够大,则这种叠加到信号电压上的 EMF 就会导致错误数据传输。实际上,一些隔离技术对电磁干扰非常敏感。为了理解电容隔离器为什么不受磁场的影响,我们需要对其内部结构进行研究。

电容隔离器的结构

电容隔离器由两块硅芯片—一个发送器和一个接收机组成(请参见图 2)。数据传输在由两个电容构成的差动隔离层之间进行,在每个电容的二氧化硅 (SiO2) 电介质两端都有一块铜顶片和一个导电硅底片。发送器芯片的驱动器输出通过一些接合线连接到接收机芯片上隔离电容的顶片。通过将电容的底片连接接收机输入构成了一个导电环路。图 3 显示了隔离层的等效电路结构图,并标示出了金接合线之间的环路区域。很明显,穿过该环路的磁场将会产生一个 EMF,其表示下面 RC 网络的输入电压噪声 Vn1。我们常常碰到的第二种差动噪声部分 Vn2,其产生原因是共模噪声到差动噪声的转换。两个噪声分量共同组成了综合噪声 Vn。如果只考虑 EMF 的影响,则可以保守地将 Vn 一分为二:
 
图 2 电容隔离器内部结构的简化结构图
 

图 3 隔离层的等效电路结构图
 

若要触发接收机,RC 网络的输出必须提供一个差动输入电压 VID,其超出了接收机输入阈值。是否出现伪触发,具体取决于 RC 网络的增益响应 G(f)。

将差动网络转换为单端网络(请参见图 4),简化了 G (f) 的推导过程,但却要求 C′1 = 2C1,R′1= R1/2,C′2 = 2C2,以及 R′2 = R2/2。

图 4 单端 RC 网络
 

一次电路仿真证实了 RC 网络为一个一阶高通滤波器,其 C′1 和 R′1 为主要组件,频率高达 100 MHz(参见图 5 中蓝色曲线)。超出这一频率以后,寄生组件 C′2 和R′2生效,从而引起稍稍偏离于线性的斜率。因此,频率达到 100 MHz 以后,增益响应可以表示为 VID/vn 的比:[page]
 

确定不会引起伪接收机触发的最大允许噪声,要求对方程式 5 求解 vn:
 

然后,将 vn 代入方程式 4,得到以伏特为单位的最大容许 EMF:
 

将 EMF 代入方程式 3,得到最大可能磁通密度:
 
图 5 增益幅度频率响应 |G(f)|
 

通过将下列数值插入方程式 8 中,推导出表 1 所列磁通密度的频变值:

VID = 10 mV(接收机输入阈值的大小)
R′1 × C′1 = 25 ps(有效时间常数)
A = 944 × 10–9 m2(有效环路面积)
f = 1 kHz to 100 MHz(相关频率范围)

表 1 距离电容隔离器 0.1m 的导体的电流值和磁场值
 

利用方程式 2 和 3 还得到 EMF、磁场强度 (H) 以及导体(此处假设将来的隔离器为 0.1 m)的相应电流 (I)。

由表 1 所列的一些极高值,清楚地表明 5 兆安低频电流和 100MHz 下 500A 电流都不能让这种隔离器停止正常工作。出现这种几乎无限 MFI 的原因是隔离电容的位置。如果这些电容位于发送器芯片上,则任何接合线中产生的 EMF 都能够影响到未受干扰的接收机输入。

很明显,这种高 MFI 值不可能进行实际的测试。电容隔离器的产品说明书说明了仅 1000 A/m 的适度值作为实际测试用。然而,无屏蔽电容隔离器可以轻松通过 IEC61000-4-8 和 IEC61000-4-9 标准的 5 级 MFI 要求。这些标准分别描述了高达 100 A/m 电源频率电磁场以及 1000 A/m 脉冲电磁场的应用。5 级规定了许多导体、总线或者中高压线路的恶劣工业环境,它们都携带有数万安的电流。另外还包括许多携带全部雷电电流的雷电保护系统和高层建筑结构(例如:电缆塔等)的接地导体。重型工业厂房和电站的室外配电装置也是这种环境的代表。

图 6 将电容隔离器的计算得 MFI 阈值同 IEC 61000-4-8 和 IEC 61000-4-9 的 5 级(最高)测试水平进行了对比。

图 6 MFI 测试阈值
 

结论

超出电容隔离器差动电路噪声预算的磁耦合要求 1MHz 下大于 11.7 V•s/m2(117千高斯) 的磁通量密度。这需要在一个距离器件 0.1m 的导体中有超过 5 百万安的电流才能产生这样一个磁场。在自然界或者任何制造设备中这都是不可能存在的。如果的确存在,那么设计人员便可做以下情况假设:在隔离层失效以前,周围的电路便都已失效。
关键字:磁场抗扰度  隔离器  数字电容 引用地址:数字电容隔离器的磁场抗扰度

上一篇:浅谈西门子PLC控制程序的保护
下一篇:浅析数字电容隔离器的磁场抗扰度

推荐阅读最新更新时间:2024-05-02 23:42

波仕卡无源RS-485高速隔离器独辟蹊径
  随着现场总线的日益广泛的使用,人们逐步解决了简单总线信号的无源隔离,比如RS232隔离,比如4-20mA电流环的无源隔离。2015年1月,波仕电子正式发布型号为BS485H的“无源RS-485高速隔离器”,适应所有RS-485通信软件也无需任何设置。与以前的型号BS485A相比,新产品BS485H实现了速率增加10倍,从最高9600bps增加到最高115200bps、同样大小外形,同样无需供电,价格却降低了一半。   RS-485作为一种广泛使用的现场总线,有各种通信速率等规程,比如常用的(9600,N,8,1)。其它厂家的普通RS-485隔离中继器需要通过软件或者硬件跳线选择通信规程、波特率、格式等等。波仕的无论有源还是无源的
[嵌入式]
医疗保健应用中的ADI电容数字转换器技术
近年来,电子技术的进步为医疗保健行业的诸多创新和改进创造了条件。医疗保健设备面临的挑战包括提出新的诊断和治疗方法,实现远程监控,开发家庭护理设备,提高质量和可靠性,以及增强灵活性和易用性。 40余年以来, ADI 公司丰富而全面的线性、混合信号、MEMS和数字信号处理技术给仪器仪表、成像和病人监护等领域的医疗设备设计带来了重大的变革。本文将集中探讨 电容数字转换器 (CDC)技术,该技术使得在医疗保健应用中使用高性能电容检测成为可能。 电容式触摸传感器控制器——一种全新的用户输入法 电容式触摸传感器以类似图1所示的按钮、滑动条、滚轮或其他方式提供一种用户界面。 图1. 触摸传感器布局示例 各个蓝色几何区域表示印刷电路板(P
[医疗电子]
医疗保健应用中的ADI<font color='red'>电容</font><font color='red'>数字</font>转换器技术
在非隔离应用中将数字隔离器用作电平转换器
  iCoupler数字隔离器广泛用于跨越隔离栅传输数字信号。某些情况下,数字隔离器在非隔离应用中也非常有用。   –48V DC-DC电源   在通信电源应用中,标准电轨为–48V直流,且原边控制信号以该电轨为参考。副边控制信号通常是以地为参考的低电压I/O(例如,+5V、+3.3V CMOS)。原边地和副边地相连,整个系统为非隔离式。这类DC-DC电源应用中,数字隔离器适合为反馈信号提供电平转换功能。如图1所示,副边的高电平输入电压为5V,低电平电压为0V;原边的高电平电压为–43V,低电平为–48V。数字隔离器的原边地连接–48V电轨,且VDD电源连接–43V。由于存在内置隔离栅,隔离器的每一边都在独立的电压域内工作
[电源管理]
在非隔离应用中将<font color='red'>数字</font><font color='red'>隔离器</font>用作电平转换器
RS-232隔离器可实现多路RS232的多机通信
     波仕BS4232型1对4路RS232隔离器不仅实现了RS232之间的隔离,还可以实现一路RS232与4路RS232的通信,最关键的是还无需供电。      普通的RS232隔离器只能够实现1路RS232与一路RS232之间的隔离,传统的RS232也不能够实现一路对多路的多机通信。一般为了解决RS232多机通信的问题,往往是先转换为RS485,然后把RS485信号并联在一起。这样不仅布线复杂,成本也高,而且难于实现相互之间的隔离。RS232的通信距离虽然只有最远15米,如果节点都在室内或者机柜内也足够了。超过15米也可以配接RS232/485转换器。       使用BS4232可以连接一个RS232上位机(DB9
[嵌入式]
基于51单片机的数字电容测量仪设计
本设计详细介绍了一种基于单片机的数字式电容测量仪设计方案及实现方法。设计的主要方法是采用555芯片构成单稳态触发器,将电容容量转换为脉冲宽度。通过单片机的计时器测量脉宽, 根据已知的R值,通过单片机的运算功能,计算出电容容量,最后,再通过单片机的普通I/O口控制液晶屏显示出电容容量的计算结果。系统的测量范围为10pF~ 500uF, 具有多个量程,可根据用户需要由用户选择,与用户的交互是通过键盘实现,不同量程的实现是通过单片机的I/O口控制继电器的吸合与断开来选择不同的R值,从而实现不同的量程。同时,本设计注重设计方法及流程,首先根据原理设计电路,再通过protues仿真,利用keil编程,进而借助altium designer
[单片机]
基于51单片机的<font color='red'>数字</font><font color='red'>电容</font>测量仪设计
通用串行总线(USB)电缆隔离器电路
电路类型:  接口, 隔离, 电源  优化目标:  隔离  应用:  楼宇控制, 仪器仪表, 医疗保健, 电能计量, 运动控制, 过程控制, 安全与监控                       电路功能与优势  通用串行总线(USB)正迅速成为大部分PC外设的标准接口。由于它具有出色的速度、灵活性,并且支持设备热插拔,因而正在取代RS232和并行打印机端口。工业和医疗设备制造商也非常希望使用这种总线,但苦于没有很好的方式来为控制危险电压的机器连接或者医疗应用中的低泄漏防去颤连接提供必要的隔离,导致应用推广相当缓慢。  ADuM4160主要设计用作USB外设的隔离元件。但在某些情况下,它也可以用于实现隔离电缆功能。
[嵌入式]
数字万用表电阻档检测电容器方法
实践证明,利用数字万用表也可观察电容器的充电过程,这实际上是以离散的数字量反映充电电压的变化情况。设数字万用表的测量速率为n次/秒,则在观察电容器的充电过程中,每秒钟即可看到n个彼此独立且依次增大的读数。根据数字的这一显示特点,可以检测电容器的好坏和估测电容量的大小。下面介绍的是使用数字万用表电阻档检测电容器的方法,对于未设置电容档的很有实用价值。此方法适用于测量0.1μf~几千微法的大容量电容器。 测量操作方法 将数字万用表拨至合适的电阻档,红表笔和黑表笔分别接触被测电容器cx的两极,这时显示值将从“000”开始逐渐增加,直至显示溢出符号“1”。若始终显示“000”,说明电容器内部短路;若始终显示溢出,则可能时电容器内部极间开路
[测试测量]
CAN总线隔离器的设计与应用
  引言   CAN(Controller Area Network),即控制器局域网,是应用最广泛的现场总线之一,CAN总线以其实时性强,可靠性高,结构简单,互操作性好,价格低廉等优点,可应用于高速网络和低成本的线路网络。这里提出一种CAN总线隔离器的通讯系统,将其应用于某飞行器到地面的通讯网络,实现飞行器和地面的速度隔离,从而使飞行器和地面之间能够稳定实时通信。该系统设计在分析CAN总线2.0B协议的基础上,采用结构化方法独立设计飞行器和地面双方的通信协议。底层模块的硬件设计是以C8051F040高速型单片机为核心,其内部集成CAN协议控制器,因而只需增加CAN收发器就可实现CAN智能节点设计,比传统的由单片机与CAN协议控制器
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved