工程量转换的方法

发布者:EuphoricMelody最新更新时间:2016-04-14 来源: eefocus关键字:工程量  转换 手机看文章 扫描二维码
随时随地手机看文章
1、基本概念


我们生活在一个物质的世界中。世间所有的物质都包含了化学和物理特性,我们是通过对物质的表观性质来了解和表述物质的自有特性和运动特性。这些表观性质就是我们常说的质量、温度、速度、压力、电压、电流等用数学语言表述的物理量,在自控领域称为工程量。这种表述的优点是直观、容易理解。在电动传感技术出现之前,传统的检测仪器可以直接显示被测量的物理量,其中也包括机械式的电动仪表。

2、标准信号

在电动传感器时代,中央控制成为可能,这就需要检测信号的远距离传送。但是纷繁复杂的物理量信号直接传送会大大降低仪表的适用性。而且大多传感器属于弱信号型,远距离传送很容易出现衰减、干扰的问题。因此才出现了二次变送器和标准的电传送信号。二次变送器的作用就是将传感器的信号放大成为符合工业传输标准的电信号,如0-5V、0-10V或4-20mA(其中用得最多的是4-20mA)。而变送器通过对放大器电路的零点迁移以及增益调整,可以将标准信号准确的对应于物理量的被检测范围,如0-100℃或-10-100℃等等。这是用硬件电路对物理量进行数学变换。中央控制室的仪表将这些电信号驱动机械式的电压表、电流表就能显示被测的物理量。对于不同的量程范围,只要更换指针后面的刻度盘就可以了。更换刻度盘不会影响仪表的根本性质,这就给仪表的标准化、通用性和规模化生产带来的无可限量的好处。

3、数字化仪表

到了数字化时代,指针式显示表变成了更直观、更精确的数字显示方式。在数字化仪表中,这种显示方式实际上是用纯数学的方式对标准信号进行逆变换,成为大家习惯的物理量表达方式。这种变换就是依靠软件做数学运算。这些运算可能是线性方程,也可能是非线性方程,现在的电脑对这些运算是易如反掌。

4、信号变换中的数学问题

信号的变换需要经过以下过程:物理量-传感器信号-标准电信号-A/D转换-数值显示。

声明:为简单起见,我们在此讨论的是线性的信号变换。同时略过传感器的信号变换过程。

假定物理量为A,范围即为A0-Am,实时物理量为X;标准电信号是B0-Bm,实时电信号为Y;A/D转换数值为C0-Cm,实时数值为Z。

如此,B0对应于A0,Bm对应于Am,Y对应于X,及Y=f(X)。由于是线性关系,得出方程式为Y=(Bm-B0)*(X-A0)/(Am-A0)+B0。又由于是线性关系,经过A/D转换后的数学方程Z=f(X)可以表示为Z=(Cm-C0)*(X-A0)/(Am-A0)+C0。那么就很容易得出逆变换的数学方程为X=(Am-A0)*(Z-C0)/(Cm-C0)+A0。方程中计算出来的X就可以在显示器上直接表达为被检测的物理量。

5、PLC中逆变换的计算方法

以S7-200和4-20mA为例,经A/D转换后,我们得到的数值是6400-32000,及C0=6400,Cm=32000。于是,X=(Am-A0)*(Z-6400)/(32000-6400)+A0。

例如某温度传感器和变送器检测的是-10-60℃,用上述的方程表达为X=70*(Z-6400)/25600-10。经过PLC的数学运算指令计算后,HMI可以从结果寄存器中读取并直接显示为工程量。

用同样的原理,我们可以在HMI上输入工程量,然后由软件转换成控制系统使用的标准化数值。

在S7-200中,(Z-6400)/25600的计算结果是非常重要的数值。这是一个0-1.0(100%)的实数,可以直接送到PID指令(不是指令向导)的检测值输入端。PID指令输出的也是0-1.0的实数,通过前面的计算式的反计算,可以转换成6400-32000,送到D/A端口变成4-20mA输出。

以上讲述的是PLC中工程量转换的基本方法,程序的编写则因人、因事而异。但是万变不离其衷。如果大家感兴趣,我可以给出自己编写的程序供大家参考,同时也希望各位网友不吝赐教、互相交流。  

关键字:工程量  转换 引用地址:工程量转换的方法

上一篇:PLC编程怎么从菜鸟变成高手
下一篇:PLC及特殊功能模块在玻璃熔窑自控中的应用

推荐阅读最新更新时间:2024-05-03 00:19

这辆车的燃料燃烧可转换成水 还能用来加湿内室
在本周瑞士举办的日内瓦车展上,韩国汽车厂商现代展示了自己最新的氢燃料概念车FE Fuel Cell。大家都知道,氢燃料燃烧后只有水,而根据现代介绍,这款氢燃料概念车的续航足足可以达到800公里,而这个续航水平要比现代现款氢燃料版ix35或Tucson Fuel Cell高出了不少。 FE Fuel Cell名字中的FE代表了“未来、节能”,因此这款概念车的亮点不仅仅是动力系统,更是清洁环保的理念。事实上,现代对于使用氢燃料能源一直都充满了兴趣,并且成为了少数几家尝试氢燃料汽车研发的厂商之一。 而现代在FE Fuel Cell概念车上的设计,绝不仅仅只是氢燃料这么简单。比如在氢燃料电池燃烧后剩余的水,可以通过汽车内置的空气加湿器
[汽车电子]
AccelChip新产品将MATLAB浮点算法转换成为定点C 代码
AccelChip日前推出新产品模块——M2C-Accelerator,将C++技术引入到基于模型的设计流程。M2C-Accelerator的主要功能是将浮点的MATLAB算法转换成为定点的C++代码,大幅度地提高仿真速度。同时,用户还可以对这些C++代码进行二次开发,与多种仿真环境进行集成,比如MATLAB、Simulink、Xilinx System Generator或者其它C语言开发环境。 一些客户调查信息的统计结果显示,相比一般的C语言定点代码仿真速度,M2C-Accelerator产生的定点代码仿真速度可以提高近1000倍;相比MATLAB定点代码仿真速度,可以提高近150倍。 AccelChip公司创立于2000
[嵌入式]
在分布式电源系统中采用集成DC-DC转换器节省空间、缩短研发时间
  引言   通过使用单个大功率、隔离型DC-DC模块将48V电压转换成一个中等电源,如12V或更低电压,可以获得较好的系统性能。将这一中等电压再转换到系统负载所要求的具体电压。这样的电压转换可以通过非隔离、负载点电源实现,如图1右侧框图所示。对于第二级电源转换,集成开关稳压器是非常理想的选择,因为输入电压(≤ 12V)和输出电流( 10A)相对较低。 图1. 与电信单板上传统的分布电源架构(左边)相比,集成开关调节器(右边)具有更高效率和可靠性,能够加快设计进程、缩小电路板面积。   采用集成开关调节器的优势   电子行业的很多领域,包括电源电子行业,其共同目标是集成系统元件,以降低总体成本、提高可靠性,
[电源管理]
在分布式电源系统中采用集成DC-DC<font color='red'>转换</font>器节省空间、缩短研发时间
300MSPS高速10位D/A转换器AD9751
摘要: AD9751是一种转换速率可高达300MSPS的高速数模转换器,它具有双端口输入、转换精度高、速度快、功耗小、成本低等诸多优点。同时具有优异的交、直流特性,可广泛应用于需要数据转换的应用场合,同时可拓展高速数据系统中的应用。文中介绍了AD9751的主要特点和工作原理,讨论了它的内部PLL及高数字接口等应用问题。 1 概述 AD9751是一个双输入端口的超高速10位CMOS DAC。它内含一个高性能的10位D/A内核、一个基准电压和一个数字接口电路。当AD9751工作于300MSPS时,仍可保持优异的交流和直流特性。 AD9751的数字接口包括两个缓冲锁存器以及控制逻辑。当输入时钟占空比不为50%时,可以使用内部
[模拟电子]
低EMI/EMC开关转换器如何简化ADAS设计
背景知识 ADAS是高级驾驶员辅助系统的英文缩写,它在当今许多新型汽车和卡车中很常见。此类系统通常有助于安全驾驶;当检测到周围物体(例如不遵守交通规则的行人、骑车人,甚至有其他车辆位于不安全的行驶轨迹上)构成风险时,系统可以向驾驶员提供警报!此外,这些系统通常提供自适应巡航控制、盲点检测、车道偏离警告、驾驶员困倦监控、自动制动、牵引控制和夜视等动态特性。因此,消费者对安全性日益增强的重视、对驾驶舒适性的要求以及政府安全法规的不断增加,是未来十年后半时期汽车ADAS的主要增长动力。 这种增长对行业来说并不是没有挑战,包括价格压力、通货膨胀、复杂性和系统测试的困难性。此外,欧洲汽车行业是最具创新性的汽车市场之一,这点不足为奇,
[电源管理]
低EMI/EMC开关<font color='red'>转换</font>器如何简化ADAS设计
ROHM的工业设备用DC/DC转换IC
一直以来,工业设备使用的元器件要求具备高可靠性并能确保长期供应,但近年来也像消费电子一样,对小型化的需求日益增加。只要实现电源电路的小型化,即可减少设备的体积和安装面积。 而另一方面,将电源单元小型化会使设备外壳的温度上升,从而导致周边元器件的可靠性下降。要想避免这种后果,需要降低DC/DC转换IC的功率损耗,减少发热量。 ROHM的最新DC/DC转换IC采用三大方法实现了电源的小型化,即:通过高频开关工作实现周边元器件的小型化,通过同步整流方式降低损耗,通过大电流低损耗工艺减少发热量。 1. 通过高频开关工作实现周边元器件的小型化 ROHM的BD9E300EFJ-LB是输入耐压达40V的1ch同步整流降压型
[电源管理]
ROHM的工业设备用DC/DC<font color='red'>转换</font>IC
32路DA转换器电路图
[模拟电子]
32路DA<font color='red'>转换</font>器电路图
耦合电感拓展了 DC/DC 转换器的应用
引言 最近,电感厂商纷纷开始发布批量生产的耦合电感。耦合电感由两个缠绕在同一磁芯上的单独电感组成,其封装与单电感在长宽尺寸上相似,只会稍微高一点,但可以产生相同的电感值。耦合电感的价格一般也会比两个单电感的价格低。耦合电感的绕组可以为串联、并联,也可以作为一个变压器。本文重点介绍利用耦合电感满足常见应用需求的四种 DC/DC 转换器拓扑结构。 彻底了解耦合电感的各种规范,是充分利用它们所具有优势的一个基本要求。大多数耦合电感都具有相同的匝数—即 1:1 匝数比—但有些更新的耦合电感拥有更高的匝数比。耦合电感的耦合系数 K 一般约为 0.95,远低于自定义变压器至少为 0.99 的系数。耦合电感的互感系数让其在一些回描应用中
[电源管理]
耦合电感拓展了 DC/DC <font color='red'>转换</font>器的应用
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved