在USB接口有四根线,分别是VBUS,D-,D+,GND。其中VBUS线是HOST/HUB向USB设备供电的电源线。HOST/HUB每个端口通过VBUS提供的电流最大为500mA,电压范围是4.4V-5.5V,但是这并不是意味着设备可以无条件地使用VBUS向自己提供500mA的电流。
根据USB规范,从电源方面来讲,USB设备分为自供电和总线供电两种设备类型,设备通过枚举过程的设备描述符声明自己的电源要求。自供电设备不使用HSOT/HUB的电源,而是自身有电源供应;总线供电即指设备电源来自VBUS。如果是总线供电设备,USB规范按照设备工作时吸取的电流大小又规定了两种设备:low pwer和high power设备,low power设备任何情况下不得吸取超过100mA的电流,high power设备在正确配置之前不得吸取超过100mA的电流,如果已经配置,任何情况下不得吸取超过500mA的电流。如果设备进入suspend状态,low power设备任何情况下不得吸取超过500uA电流,high power设备在已经正确配置并且远程唤醒功能被主机使能的情况下不得吸取超过2.5mA的电流,否则不得超过500uA(2008年USB-IF对suspend电流规定进行了变更,原来的500uA电流的规定过于严格,因此所有USB设备suspend电流放宽到2.5mA。)。从规范的规定来看,USB对电源管理是有严格要求的,因此,有些USB设备或者非USB设备不管三七二十一就从VBUS取电是违反USB规范的。还有一种自供电和总线供电混合类型设备,其对VBUS的使用规定和总线供电设备相同。
但是在实际使用中,USB电源往往被滥用 。许多厂商的USB设备并不送到USB-IF进行认证,此种情况下,其USB电源的设计往往未必满足USB规范。
从duoduo所观察过的PC主板和HUB来看, 许多主板/HUB并没有在VBUS的供电上严格遵从USB规范,通常是直接从电源模块送+5V到VBUS上,有的甚至连VBUS过流检测 电路都没有。主板的VBUS供电能力还和主机使用的开关电源有很大关系,一些劣质电源向VBUS提供的电流根本就达不到500mA或者是大电流下VBUS电压降的很厉害导致设备不能正常工作 ;而没有VBUS过流检测的主板在USB外设故障情况下有导致主板烧毁的危险。HUB有无源和有源两种,有源HUB和HOST的VBUS指标相同,无源HUB由于本身没有电源,挂在其下的所有设备吸取的电流总和不能超过该HUB上行端口所能够获得的电流。目前市面上流行的各种USB设备,在VBUS电源设计上能够满足规范的其实也不多,很大一个原因是一些终端用户喜欢的功能特性其实无法满足USB规范;不过,USB是一个发展变化很快的技术,需求与规范的矛盾都在逐渐的解决中,典型的如USB-IF新发布的USB充电器规范就是为了解决此前USB设备既想满足规范但又希望利用VBUS电源给电池充电的矛盾。
但是如果你的USB设备需要通过USB-IF的认证以获得在设备上使用USB logo的权利,那麽电源设计就将真的要小心了,你的设备必须严格遵从USB规范中的电源规定,否则功亏一篑,数千美金的认证费就会白白扔掉了。在设备使用VBUS供电的时候除了考虑电流大小之外还必须考虑VBUS的电压以及设备刚接入时的浪涌电流大小,USB规范中VBUS电压在4.4V-5.5V之间,根据HOST/HUB的不同,少数劣质HOST/HUB会超出这个规定,如果设备使用3.3V或更低电源,简单从VBUS加个低功耗LDO就可以了,但是如果设备直接使用VBUS作为自身电源则必须考虑设备能否在4.4V-5.5V下都能够正常工作,否则兼容性问题会让你大伤脑筋。另外据说有的笔记本电脑仅能向VBUS提供100mA电流,这个duoduo没有研究,哪位可以补充一下。至于浪涌电流,是USB-IF认证中的一项,我们通常习惯性的在设备电源入口加一个数十uF乃至数百uF电容的做法此时根本是不可能通过浪涌测试的;从duoduo的经验上来看,这个电容一般取小于4.7uF或者2.2uF,由于后面的电路也在设备的VBUS电源入口处存在等效电容,因此实际取值应该根据浪涌测试结果进行调整。
关键字:USB设备 电源设计
引用地址:USB设备的电源设计考虑
根据USB规范,从电源方面来讲,USB设备分为自供电和总线供电两种设备类型,设备通过枚举过程的设备描述符声明自己的电源要求。自供电设备不使用HSOT/HUB的电源,而是自身有电源供应;总线供电即指设备电源来自VBUS。如果是总线供电设备,USB规范按照设备工作时吸取的电流大小又规定了两种设备:low pwer和high power设备,low power设备任何情况下不得吸取超过100mA的电流,high power设备在正确配置之前不得吸取超过100mA的电流,如果已经配置,任何情况下不得吸取超过500mA的电流。如果设备进入suspend状态,low power设备任何情况下不得吸取超过500uA电流,high power设备在已经正确配置并且远程唤醒功能被主机使能的情况下不得吸取超过2.5mA的电流,否则不得超过500uA(2008年USB-IF对suspend电流规定进行了变更,原来的500uA电流的规定过于严格,因此所有USB设备suspend电流放宽到2.5mA。)。从规范的规定来看,USB对电源管理是有严格要求的,因此,有些USB设备或者非USB设备不管三七二十一就从VBUS取电是违反USB规范的。还有一种自供电和总线供电混合类型设备,其对VBUS的使用规定和总线供电设备相同。
但是在实际使用中,USB电源往往被滥用 。许多厂商的USB设备并不送到USB-IF进行认证,此种情况下,其USB电源的设计往往未必满足USB规范。
从duoduo所观察过的PC主板和HUB来看, 许多主板/HUB并没有在VBUS的供电上严格遵从USB规范,通常是直接从电源模块送+5V到VBUS上,有的甚至连VBUS过流检测 电路都没有。主板的VBUS供电能力还和主机使用的开关电源有很大关系,一些劣质电源向VBUS提供的电流根本就达不到500mA或者是大电流下VBUS电压降的很厉害导致设备不能正常工作 ;而没有VBUS过流检测的主板在USB外设故障情况下有导致主板烧毁的危险。HUB有无源和有源两种,有源HUB和HOST的VBUS指标相同,无源HUB由于本身没有电源,挂在其下的所有设备吸取的电流总和不能超过该HUB上行端口所能够获得的电流。目前市面上流行的各种USB设备,在VBUS电源设计上能够满足规范的其实也不多,很大一个原因是一些终端用户喜欢的功能特性其实无法满足USB规范;不过,USB是一个发展变化很快的技术,需求与规范的矛盾都在逐渐的解决中,典型的如USB-IF新发布的USB充电器规范就是为了解决此前USB设备既想满足规范但又希望利用VBUS电源给电池充电的矛盾。
但是如果你的USB设备需要通过USB-IF的认证以获得在设备上使用USB logo的权利,那麽电源设计就将真的要小心了,你的设备必须严格遵从USB规范中的电源规定,否则功亏一篑,数千美金的认证费就会白白扔掉了。在设备使用VBUS供电的时候除了考虑电流大小之外还必须考虑VBUS的电压以及设备刚接入时的浪涌电流大小,USB规范中VBUS电压在4.4V-5.5V之间,根据HOST/HUB的不同,少数劣质HOST/HUB会超出这个规定,如果设备使用3.3V或更低电源,简单从VBUS加个低功耗LDO就可以了,但是如果设备直接使用VBUS作为自身电源则必须考虑设备能否在4.4V-5.5V下都能够正常工作,否则兼容性问题会让你大伤脑筋。另外据说有的笔记本电脑仅能向VBUS提供100mA电流,这个duoduo没有研究,哪位可以补充一下。至于浪涌电流,是USB-IF认证中的一项,我们通常习惯性的在设备电源入口加一个数十uF乃至数百uF电容的做法此时根本是不可能通过浪涌测试的;从duoduo的经验上来看,这个电容一般取小于4.7uF或者2.2uF,由于后面的电路也在设备的VBUS电源入口处存在等效电容,因此实际取值应该根据浪涌测试结果进行调整。
上一篇:可消除USB数据采集模块潜在危险的方法和案例分析
下一篇:can数据传输系统的原理与故障诊断
推荐阅读最新更新时间:2024-05-03 00:20
小型无变压器开关电源设计实例
采用变压器的供电电源体积较大,在一些要求小体积的制作中难以使用。本文介绍的小型无变压器电源,能提供3~15V的电压,最大电流150mA,可满足小型电子设备的供电需要。 电路如图所示,220V经D2整流C1滤波,作为Q1的导通驱动电压,当220V正半周开始、但W滑动端上电压尚未足够大时,Q2处于截止状态,C1上的电压经R4加在Q1的栅极使Q1导通,220V正半周经D1、R5、Q1对电容C2快速充电。当W滑动端的电压升到足以使D3和Q2导通时,Q1栅极失去电压而截止。调节W即可调节对C2的充电时间,也就调节了输出电压。由于Q1的导通时间极短,因此C2选用了大容量电容,以保证有较平滑的输出电压。 电路中R5是限流电阻,可减小对C2
[电源管理]
技术文章—多种DC-DC技术合力应对电源设计的挑战
原创文章 电力系统设计人员正面临来自市场的持续压力,努力寻找充分利用可用电力的方法。 在便携式设备中,更高的效率可以延长电池的使用寿命,并将更多功能放入更小的封装中。在服务器和基站中,效率的提升更是可以直接节省基础设施(冷却系统)和运营成本(电费)。 为满足市场需求,系统设计人员正在改进多个领域的电力转换过程,包括更高效的开关式拓扑、封装创新和以碳化硅(SiC)和氮化镓(GaN)为基材的新型半导体器件。 开关式转换器拓扑的改进 为充分利用可用电力,人们越来越多地采用基于开关技术而不是线性技术的设计。开关式电源(SMPS)的有效功率高达90%以上。这延长了便携式系统的电池寿命,降低了大型设备的电力成本,并且可以省
[电源管理]
高清数字电视音视频及电源设计技术
无论由摩尔定律或消费需求驱动,在当今电视中所需要的性能水平可能似乎是势不可当的。 与标准清晰度电视格式(SDTV)相比,具有1080像素的高清晰(HD)格式的数字电视所驱动的数据量要大6倍,它要管理数字电视、IPTV、视频会议广播及处理杜比AC-3、MPEG和其它音频格式,这些功能都成为了数字电视(DTV)必须具备的功能。 从对音频、视频和输入信号格式的最高要求来说,存在若干可供选择观看的选项:正投、背投、DLP、LCD、等离子和CRT。无论是在嵌入到手表中的1英寸的显示器上观看电视,或是采用投影系统的显示屏在整块墙壁上观看电视,对尺寸和性能的组合要求几乎是无穷无尽的。 数字电视基础 即使目前在货架上
[嵌入式]
基于PQ35的开关电源设计及制作
1.引言 开关电源从上世纪50年代问世至今以体积小、效率高而广泛应用于计算机、通信装备等几乎所有的电子设备。其种类繁多、形式多样,发展趋势也朝着小体积、高效率、低成本的方向发展。这里介绍的3 00 W开关电源属于隔离型硬开关、半桥式开关电源,在较低电压(1 4V)和较大电流(2 2A)输出的条件下有很好的效率及输出指标,对核心器件(例如高频变压器)进行了合理的参数及绕制工艺设计。 高频变压器是开关电源中核心能量转换部件,它和普通工频变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁芯或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感
[电源管理]
热敏电阻型浪涌抑制器在电源设计中的应用
本文首先分析电子产品为什么会有开机浪涌,然后以典型的电源电路为例分析如何使用热敏电阻抑制浪涌电流,最后介绍热敏电阻在实际应用中应如何选型。 开机浪涌电流产生的原因 图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。 图1 电源示意图 假设输入电压V1为
[电源管理]
通用串行总线(USB)设备的驱动
摘要: 从问题的由来、类驱动程序、通信协议、描述符、驱动开发等对USB的驱动进行分析和讨论,提出USB设备使用操作系统嵌入的通用类驱动程序成为趋势。
关键词: USB 类驱动程序 人工接口设备(HID) Windows驱动程序模型(WDM)
最初设计USB(Universal Serial Bus)这种外设总线的目的之一就是为了便于使用,这是计算机发展的产物。外设总线最重要的就是操作系统对外设的自动识别、配置,实现热插拔,即插即用。本文试图以人工接口设备(Human interface device,简称HID)为主,从问题的由来、类驱动程序、通信协议、描述符、驱动开发等几个方面来探
[应用]
意法半导体发布50W GaN功率变换器,面向高能效消费及工业级电源设计
意法半导体发布50W GaN功率变换器,面向高能效消费及工业级电源设计 2022 年 4 月 7 日,中国——意法半导体 VIPerGaN50能够简化最高50 W的单开关反激式功率变换器设计,并集成一个 650V 氮化镓 (GaN) 功率晶体管 ,使电源的能效和小型化达到更高水平。 VIPerGaN50 采用单开关拓扑,集成很多功能,包括内置电流采样和保护电路,采用低成本的 5mm x 6mm 紧凑封装。芯片内部集成的GaN 晶体管可应用于高开关频率,从而减小反激变换器的体积和重量。使用这款产品设计先进的高能效开关电源 (SMPS),可显著减少外围元器件的数量。 VIPerGaN50 可帮助设计人员利用 GaN
[电源管理]
便携式太阳能备用移动电源设计方案
移动备用电源解决了数码产品户外用电供电的需求,以大自然可再生能源转换储能或家用电储能解决移动数码产品户外断电、供电问题。产品特点以轻便、高效、多样化为主。 一、便携式太阳能备用电源设计方案要求: 便携式太阳能备用电源以太阳能为转换来源,将太阳能转换成电能,将电能通过锂电池进行存储,以达到移动数码产品户外供电的目的。整个产品采用单节大容量锂电池作为储能装置,充电采用双层充电模式:即太阳能板接收太阳光充电、充电器充电双向充电模式。输出采用5V输出。最大输出电流可达到2A,可以满足相关数码产品供电需求。精确的LED电量显示,时时有效地将电池的剩余电量按精确的百分比以LED亮灯的形式展示给用户,以达到高效直观的目的。 1)
[电源管理]