1 引言
随着汽车电子技术的不断发展,汽车上的各种电子装置越来越多,电子控制装置之间的通讯也越来越复杂,而汽车上传统的电气系统大多采用点对点的单一通信方式,相互之间少有联系,造成了庞大的布线系统,已远远不能满足汽车愈加复杂的控制系统要求。汽车控制局域网CAN 总线应运而生,它广泛应用于汽车电子控制系统中,为实现汽车控制部件的智能化和汽车控制系统的网络化提供了一个有效的途径和方法。
2 CAN总线技术简介
CAN 总线是德国BOSCH 公司从20 世纪80 年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1Mb/s.CAN 总线通信接口中集成了CAN 协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。CAN 协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,最多可标识2048(2.0A)个或5 亿(2.0B)多个数据块。采用这种方法的优点可使网络内的节点个数在理上受限制。数据段长度最多为8 个字节,不会占用总线时间过长,从而保证了通信的实时性。CAN 协议采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性。
3 系统设计思想
汽车车身系统的控制对象包括:4个车门锁、2个以上车窗玻璃升降器、行李箱锁、除霜加热器、电动后视镜、前后大灯、小灯、转向灯、危险灯、雾灯、牌照灯、车内阅读灯、车厢顶灯等。在具备遥控功能的情况下,还包括对遥控信号的接收处理和防盗系统的控制。因此,根据以上要完成的各功能,将本系统设计为5个子模块,分别是中央控制模块(实现中控门锁、防盗、雨刮、内外灯和后窗及后视镜加热等功能),4个门控模块(分别为主驾门模块、右前门模块、左后门模块、右后门模块,来控制车窗升降器和门锁)。图1给出了车身控制模块CAN总线结构。
4 基于CAN总线车身控制系统的硬件开发
4.1 系统各模块电路框图
根据以上设计思想分为5个子模块。
主控单元接收开关信号之后,先进行分析处理,然后通过CAN总线把控制指令发送给各受控端,各受控端响应后作出相应的动作。
以下是各模块的电路框图见图2、图3、图4.
4.2 系统主要使用的元器件
(1)CAN控制器。考虑到系统拓展的需要,我们采用PHILIPS公司生产的SJA1000来作为此系统的CAN控制器。它既和PCA82C200独立CAN控制器引脚兼容,又和PCA82C200独立CAN控制器电气兼容;既支持Basic CAN模式,又支持PeliCAN模式;和CAN2.0B协议兼容;可同时支持11位和29位识别码;位速率可达1Mbits/s.
(2)CAN收发器。采用PHILIPS公司生产TJA1050,跟PCA82C250一样,TJA1050符合ISO11898标准,但在关键的AM波段上它的辐射比PCA82C250低20dB以上。在不上电时总线呈现无源特性。
(3)单片机。采用P89C51.该单片机是80C51微控制器的派生器件,是采用先进CMOS工艺制造的8位微控制器,指令系统与80C51完全相同。
5 基于CAN总线车身控制系统的软件开发
在CAN总线构成的系统中,用户要根据自己的要求来编写应用层和用户层软件。用户层实现用户要求的控制策略和系统,而应用层则是在用户层与接口之间,CAN建立了报文发送时的方法、信号电平及协议,应用层则定义了结构、响应及报文的意义,应用层要根据CAN系统应用场合的不同而有所变化。
5.1 CAN控制器的初始化
CAN控制器SJA1000在正式收发信号之前必须进行初始化设置。对SJA1000的初始化是对工作方式、接收滤波寄存器、接收屏蔽寄存器、接收代码寄存器、波特率参数等的设置,要求对写入每个寄存器的内容进行仔细和全面的考虑。其初始化流程见图5.
5.2 CAN总线上数据的发送和接收
对SJA1000初始化成功后,就可以用它来传输和接收报文。节点向总线发送报文的过程是:单片机P89C51将待发送的数据按CAN格式组成一帧报文,写入SJA1000的发送缓冲区,然后启动SJA1000,把报文发送到总线上去。接收报文的过程是:SJA1000从总线上自动接收报文,并经过过滤后存入接收缓冲区,并向单片机发出中断请求,单片机从缓冲区读取报文。发送和接收流程见图6、图7.
6 结束语
CAN总线以其高性能、高可靠性及其独特的设计越来越受到人们的重视,并被公认为是汽车电控系统中最有前途的总线之一。它作为一种可靠的汽车计算机网络总线已在许多先进汽车上得到应用,使得各汽车计算机控制单元能够通过CAN总线共享所有信息和资源,达到简化布线、减少传感器数量、避免控制功能重复、提高系统可靠性和维护性、降低成本、更好地匹配和协调各个控制系统的目的。
关键字:CAN总线 汽车车身 控制系统
引用地址:
基于CAN总线的汽车车身控制系统设计
推荐阅读最新更新时间:2024-05-03 00:26
CAN总线在啤酒发酵过程控制系统中的应用
引言 随着人们对啤酒品质的要求越来越高,传统的生产操作或控制方式已不再适应当今的生产规模和生产要求,发酵过程作为啤酒生产过程中至关重要的一环,其控制系统则尤其重要。CAN总线具有结构简单、通信方式灵活、错误检验处理等特点尤其基于优先权的无破坏性总线仲裁技术,特别适合工业过程监控设备的互联。因此,针对当前啤酒企业的设备现状和生产需要,本文将介绍一种采用CAN总线技术进行通信的啤酒发酵分布式控制系统。
图1 现场智能节点结构框图
图2 智能节点CAN总线接口电路
图3 节点查询发送(左)和中断接收(右)流程
图4 智能适配器USB—CAN硬件原理电路
控制系统总体结构 基于CAN总线的啤酒发
[嵌入式]
基于CAN/LIN总线的车身网络控制系统
1 前言
随着汽车电子技术及网络技术的不断发展,人们对汽车安全性、可靠性的要求也越来越高,为了解决由汽车电子元器件的增加而带来的通信问题,这就要求采用一种高速、多路、共享的汽车通信网络。
目前,已经开发出多种总线,如CAN(Controller Area Network)控制器局域网 ,LIN(Local Interconnect Network)局域互联网 ,FlexRay,Most等。但CAN和LIN构成目前汽车上最广泛的总线形式。
2 CAN总线介绍
20世纪80年代末,德国博世公司为解决现代汽车中众多控制单元、测试仪器之间的实时数据交换而开发了一种串行通信协议CAN ,并使其成为国际标准(I
[嵌入式]
S7-300PLC在BAF法污水处理控制系统的应用
为了解决陕西省某县城污水处理问题,设计了以BAF法为工艺,以S7-300PLC为核心,应用冗余技术、PROFIBUS现场总线技术的污水处理控制系统,阐述了控制系统的硬件集成。以StepV5.2为开发环境,应用模块化、面向对象的程序设计思想开发了基于BAF工艺的预处理、BAF生物滤池和污泥脱水系统控制的应用程序。系统运行结果表明,控制效果达到了预期目标。 伴随社会经济的发展,现代城市污水量不断增加,工业废水所占比重呈上升趋势。为了改善生态环境,充分进行废物利用,创建节约型、生态型城市。陕西省某县城通过对污水量的预测,结合城市发展前景,确定新建一规模为2×104 m3/d污水处理厂。选用BAF工艺,利用PLC自动化技术进行污水处理。
[嵌入式]
基于无线传感器网络的CAN总线互联
1 引言 装甲车辆状态信息采集系统的信息采集单元通常采用CAN总线连接,某些情况下,车辆上装和下装之间的旋转连接器由于没有连线空间,需要无线通信模块为上装和下装的CAN总线提供一个透明的无线通道。本文基于无线传感器网络给出一种无线通道的设计,主要包括CAN总线无线接入控制模块电路设计以及无线传感器节点的通信协议设计等内容。 2 电路设计 以无线传感器网络为基础的CAN总线扩展系统总体结构如图1所示,其主要由两块CAN总线无线接入控制模块构成,每个模块的组成及各部分的作用是:无线传感器节点的微控制器及存储器模块,接收对端无线接人控制模块传来的数据并存储,然后将数据交CAN控制器待发,同时接收CAN控制器传来的数据并通
[工业控制]
基于SOPC的旋转LED屏控制系统设计方案
一、引言 LED(1ight emitting diode)显示屏由发光二极管阵列构成。发光二极管(LED)是一种电流控制器件,具有亮度高、体积小、单色性好、响应速度快、驱动简单、寿命长等优点,能胜任各种场合实时性、多样性、动态性的信息发布任务,因此得到了广泛的应用。LED大屏幕是通过一定的控制方式,用于显示文字、图像行情等各种信息以及电视、录像信号,并由LED器件阵列组成的显示屏幕。LED大屏幕作为现代信息发布的重要媒体,正受到社会各界尤其是商业界、广告界的极大重视,被广泛应用于上业、交通、商业、广告、金融、体育比赛、电子景观等。 目前市场上的LED屏基本上均为平板LED屏,这种屏具有显示稳定,显示内容易修
[电源管理]
基于AT89S51单片机的PID温度控制系统设计
温度控制技术不仅在工业生产有着非常重要的作用,而且在日常生活中也起着至关重要的作用。本文对系统进行硬件和软件的设计,在建立温度控制系统数学模型的基础之上,通过对PID控制的分析设计了系统控制器,完成了系统的软、硬件调试工作。算法简单、可靠性高、鲁棒性好,而且PID控制器参数直接影响控制效果。 1. 系统概述 1.1 系统总体结构 该系统利用AT89S51丰富的外设模块搭建硬件平台。系统的硬件电路包括:模拟部分和数字部分,基本电路由核心处理模块、温度采集模块、键盘显示模块及控制执行模块等组成。 1.2 系统工作流程 系统开始工作时,首先由单片机控制软件发出温度读取指令,通过数字温度传感器采集被控对象
[单片机]
CAN总线调整同步的规则是什么
硬件同步 接收单元在总线空闲状态检测出帧起始时进行的同步调整,在检测出边沿的地方不考虑SJW的值而认为是SS段。硬件同步的过程如下图所示 : 再同步 在接收过程中检测出总线上的电平变化时进行的同步调整。 每当检测出边沿时,根据 SJW 值通过加长 PBS1 段,或缩短 PBS2 段,以调整同步。但如果发生了超出 SJW值的误差时,最大调整量不能超过SJW 值。 调整同步的规则 硬件同步和再同步遵从如下规则。 (1) 1 个位中只进行一次同步调整。 (2) 只有当上次采样点的总线值和边沿后的总线值不同时,该边沿才能用于调整同步。 (3) 在总线空闲且存在隐性电平到显性电平的边沿时,则一定要进行硬件同步。 (4) 在总线非空闲时
[嵌入式]
发酵过程低成本集散控制系统设计
摘要: 基于国产工业PC机和I/O模板设计了发酵过程集散控制系统,介绍了该系统的软、硬件结构与功能,以及发酵过程参数的优化控制方法。
关键词: 发酵过程 DCS 组态软件 优化控制
自美国Honey Well公司于1975年成功地推出世界上第一套集散控制系统DCS以来,它经历了二十多年的发展,第三代产品已走向成熟,并以其高可靠性、高性能、分散控制、集中监视、扩展灵活、组态方便等特点成为当前大型工业测控系统的主要潮流[1]。
目前国内外已推出各种型号的DCS约100余种,但通常投资较大,许多中小型企业难以承受,因此研制低成本的DCS是符合国情的。作者等人研制开发的低成本DCS,已
[应用]