浅谈FF现场总线的配电与短路保护及其防爆

发布者:脑洞狂想最新更新时间:2016-08-13 来源: eefocus关键字:FF现场总线  配电  短路保护  防爆 手机看文章 扫描二维码
随时随地手机看文章
  1 FF现场总线物理层(IEC61158-2)简介

  现场总线是指以工厂内的测量和控制机器间的数字通讯为主的网络,也称现场网络。也就是将传感器、各种操作终端和控制器间的通讯及控制器之间的通讯进行特化的网络。原来这些机器间的主体配线是ON/OFF、接点信号和模拟信号,通过通讯的数字化,使时间分割、多重化、多点化成为可能,从而实现高性能化、高可靠化、保养简便化、节省配线(配线的共享)。是连接智能现场设备和自动化系统的全数字、双向、多站的通信系统。主要解决工业现场的智能化仪器仪表、控制器、执行机构等现场设备间的数字通信以及这些现场控制设备和高级控制系统之间的信息传递问题。

  基金会现场总线(Foundation Fieldbus)通常简称为FF现场总线,它分为H1和H2两级总线。H1采用符合 IEC 61158-2标准的现场总线物理层;H2则采用高速以太网为物理层。本文只讨论FF之H1现场总线的配电、短路保护和防爆技术。

  H1现场总线物理层的主要电气特征如下:

  数据传输方式:数字化,位同步;传输波特率:31.25kbit/s;驱动电压:9~32VDC;信号电流:±9mA;电缆型式:屏蔽双绞线;接线拓扑结构:线形、树形、星形及其复合形;电缆长度:小于等于1900m(无中继器时);分支电缆的长度:30~120m;挂接设备数量:小于等于32台(无中继器时);可用中继器数;小于等于4台;适用防爆方法:本质安全型防爆方法等。

  2 FF现场总线的配电

  H1现场总线在一根屏蔽双绞线电缆上完成对多台现场仪表供电和双向数字通讯。控制系统所配备的H1网卡通常只负责与现场仪表的双向通讯。而总线的配电则需由专门的FF配电承担,如图1所示。

  H1总线以“段(Segment)”为单位组成总线网络。每台H1网卡通常有两个或4个端口。每段总线需配1台FF配电器。每段总线的两端需各配一个网端(又称终端电阻),以消除高频信号的回声。

  配备了H1网卡、FF配电器、网端之后,就可以在该段总线上挂接FF现场总线仪表了。根据FF协议的有关可互操作性的规定,任何总线基金会注册的现场仪表均应该可以挂接在H1总线上。

  随着科学技术的快速发展,过程控制领域在过去的两个世纪里发生了巨大的变革。150多年前出现的基于5-13psi的气动信号标准(PCS,Pneumatic Control System气动控制系统),标志着控制理论初步形成,但此时尚未有控制室的概念;20世纪50年代,随着基于0-10mA或4-20mA的电流模拟信号的模拟过程控制体系被提出并得到广泛的应用,标志了电气自动控制时代的到来,三大控制论的确立奠定了现代控制的基础,设立控制室、控制功能分离的模式也一直沿用至今;20世纪70年代,随着数字计算机的介入,产生了“集中控制”的中央控制计算机系统,而信号传输系统大部分是依然沿用4-20mA的模拟信号,不久人们也发现了伴随着“集中控制”,该系统存在着易失控、可靠性低的缺点,并很快将其发展为分布式控制系统(DCS,Distributed Control System分布式控制系统);微处理器的普遍应用和计算机可靠性的提高,使分布式控制系统得到了广泛的应用,由多台计算机和一些智能仪表以及智能部件实现的分布式控制是其最主要的特征,而数字传输信号也在逐步取代模拟传输信号。随着微处理器的快速发展和广泛的应用,数字通信网络延伸到工业过程现场成为可能,产生了以微处理器为核心,使用集成电路代替常规电子线路,实施信息采集、显示、处理、传输以及优化控制等功能的智能设备。设备之间彼此通信、控制,在精度、可操作性以及可靠性、可维护性等都有更高的要求。由此,导致了现场总线的产生。

  每段H1总线可以挂接多少台现场仪表,而总线电缆又能设置多长呢?通常H1网卡的供应商会说明每段所挂接仪表的极限数量(如16台)和推荐数量。

  设配电器配电能力:24VDC/400mA;

  FF总线变送器耗电:9V/17.5mA;

  FF总线阀门定位器耗电:9V/26mA;

  FF现场总线A型电缆分布电阻:44Ω/km。

  1) 现场仪表挂接数量

  变送器:400÷17.5 = 22.8(台)

  定位器:400÷26 = 15.3(台)

  因此,每根总线可挂接22台变送器或15台阀位定位器。实践中,每段H1总线通常挂接16台现场仪表,其中阀门定位器为4到8台。

  2) 电缆长度:假设总线上挂接8台变送器和8台阀门定位器。

  则现场仪表耗电总额为

  (8×17.5)+(8×26)= 348 (mA)

  允许总线电缆的压降为

  24-9 ﹦15(V)

  允许电缆总电阻为

  15V÷348mAv = 43.1Ω

  电缆长度为

  43.1÷44 = 0.980(km)

  因此,当总线上挂接8台变送器加8台阀门定位器时,电缆长度可达980 m。

  3 FF现场总线配电的冗余

  由于每段现场总线将挂接多台现场仪表,如果FF配电器失效,所有仪表均无法工作,因此FF的冗余配电越来越受到重视。

  那么,一段总线上可否直接配备两台FF配电器呢?不可以。因为FF配电器所含有FF总线适配电路,如专用的滤波电路和网端等,并不允许简单地并联使用。

  如图2所示,FF配电器可被分解为配电电路和FF适配电路两部分。由于FF适配电路难以冗余,因此FF的冗余配电方案通常将配电和FF适配分成独立的模块,并采用配电模块的冗余,如图3所示。

  市场上的产品有两种。一是每FF适配器模块均配备冗余的配电模块,组成单段的FF配电组合。二是采用一对冗余的配电模块,与多台FF适配模块组成多段(如4段)的FF配电组合。

  4 FF现场总线的短路保护
 

  实践表明,FF现场总线的实际应用中,配电故障还是比较少见的。最常见的故障是现场总线的短路。在FF总线的应用中必须充分重视FF总线的短路问题。这是因为:其一,FF总线是在一对屏蔽双绞线上挂接了多台现场仪表,任何其中一台仪表的短路,都会导致整段总线的短路。当在线维护仪表时,拆装仪表电缆的操作很难避免电缆头触碰仪表机壳,从而造成短路。即使这种短路是短暂的,也会危害整段总线的正常工作;其二,由于一段总线上任何一点的短路,都造成整段的短路,使得查找和排除短路故障比较困难。比如,某段总线挂接了8台现场仪表,末尾还有一台网端。这8台表的安装位置可能相距30 m或3层平台。当该段总线发生短路时,仪表维护人员无法直观地判断是哪台表发生短路,也无法判断是只有一个短路点,还是不止一个。

  解决短路保护问题,最直接有效的办法是采用具有总线各分支短路保护功能的现场接线盒。这种短路保护接线盒可以使得任何一台仪表的短路都不影响本总线段其他仪表的工作,而且使得仪表维护人员在控制室内便可对短路故障点一目了然。

  5 FF现场总线在非防爆场合下的的典型应用

  图4所示为目前最受欢迎的非防爆场合的FF总线应用框图。图中没有标出网端,因为在这种实际应用中,冗余的配电组合中含有一台网端,短路保护型接线盒中也含有一台网端,所以应用时无需另配网端。

  6 FF现场总线的防爆

  自从FF现场总线开始在易燃易爆的危险场合应用以来,FF现场总线的防爆技术一直在发展变化当中。

  在早期,只允许采用本质安全型防爆方法。这是因为,只有本安防爆才能充分满足现场总线仪表在不停电的条件下进行安装和维护的要求。其他防爆方法如隔爆型、增安型或无火花型防爆方法都必须断电维护。

  a) 现场总线隔离栅

  在H1网卡与现场仪表之间,设置一台现场总线隔离栅,既给无源的H1网卡配电,又给本安防爆的现场总线配电。如图5所示。

  图5所示方案在现场总线应用初期比较受用户欢迎。主要是因为这种方法比较简单、直观,与传统模拟量回路的隔离栅应用也比较类似,容易被用户接受。

  这一方案在FF现场总线总应用的推广过程中,反映出两个先天不足。

  1) 总线隔离栅大幅度限制了H1网卡挂接现场仪表的能力。因为每段H1总线只能配置1台总线隔离栅,而每台隔离栅只能挂接3至4台现场仪表。

  2) 由于这种总线隔离栅对现场总线的配电含有内阻,使现场总线电缆的长度最长只能是220 m。大大限制了其应用范围。

  不过,当时FF总线的应用规模很小,基本是实验性的,因此此方案的弊病并不突出。

  b) 现场总线本安中继器

  随着应用规模的扩大,为了克服总线隔离栅的不足,现在越来越多的用户倾向于采用现场总线本安中继器的方案。如图6所示。每段H1网卡最多配置4台安中继器,既给无源的H1网卡配电,又分别给本安防爆的现场总线配电。由于各个国家各个公司的利益之争,虽然早在1984年国际电工技术委员会/国际标准协会(IEC/ISA)就着手开始制定现场总线的标准,至今统一的标准仍未完成。很多公司也推出其各自的现场总线技术,但彼此的开放性和互操作性还难以统一。

  设本安中继器配电能力:不小于12.8VDC/100mA;FF总线变送器耗电:9V/17.5mA;FF总线阀门定位器耗电:9V/26mA;FF现场总线A型电缆分布电阻:44Ω/km。则

  1) 现场仪表挂接数量

  变送器:100÷17.5 = 5.7(台)

  定位器:100÷26 = 3.8(台)

  因此,每根本安总线可挂接5台变送器;或4台变送器加1台阀门定位器;或2台变送器加2台定位器;或1台变送器加3台定位器。

  2) 电缆长度

  假设总线上挂接4台变送器和1台阀门定位器,则现场仪表耗电总额为(4×17.5)+(1×26) = 96(mA)

  允许总线电缆的压降为 12.8-9 = 3.8 V

  允许电缆总电阻为 3.8÷96 mA = 39.5Ω

  电缆长度为39.5÷44 = 0.898(km)

  因此,当总线上挂接4台变送器加1台定位器时,电缆长度可达898 m。

  这种方案仍存在两个不足。第一,每段总线需要放多根电缆到现场,本安中继器和现场附件的数量仍较多,所占应用成本的比重较大;第二,冗余配电和短路保护的要求还没有得到满足。

  c) 无火花型和隔爆型防爆

  当FF总线的应用规模达到一个项目成千上万点以后,应用成本和系统的可运行性问题就非常突出了。一方面要求FF总线的网络结构尽可能简化,附件精简;另一方面要求FF总线实现冗余配电和短路保护。

  图7所示为基于上述考虑采用的防爆方案。其中,FF配电采用冗余配电组合。H1总线的主干线按照无火花防爆的要求敷设到危险区2区。短路保护型接线盒采用无火花型防爆(Ex nA),安装在危险区2区。

  这一方案虽然简化了FF总线配置,降低了成本,而且提高了可靠性。但是也带来了新的问题。其一,降低了系统的防爆安全性级别。无火花型防爆是所有防爆方法中安全性最低的,所以只被允许应用在危险区2区。而隔爆型防爆方法也比不上本安型防爆来得更安全。其二,无火花型防爆和隔爆型防爆方法,均不允许对仪表进行带电在线维护。由于每段总线上挂接许多仪表,如果某台仪表故障,必须对整段总线停电检修,不仅将对工厂的正常生产造成影响,还将提高工厂的管理风险和管理成本。
 

  d) FF现场安全栅模盒的应用

  这是德国P+F公司最新推出的FF总线防爆应用方案。其核心产品为集本安防爆、中继器、短路保护接线盒、网端等诸多功能于一身的FF现场安全栅模盒。应用方案如图8所示。

  首先,FF的配电采用冗余配电组合。然后H1主干总线电缆采用增安型防爆方法可敷设到现场的危险区1区。FF现场安全栅模盒本身采用胶封型防爆主体、增安型防爆主干线端子、4路本安型防爆的输出,可安装在危险区1区。相互隔离的4路输出为本安防爆(EX ia),并具有短路保护功能。现场仪表采用本安型防爆,可安装在危险区0区。

  与前一个方案相比,其一,本方案显着提高了系统的防爆安全级别,FF现场安全栅模盒可安装在1区,现场仪表可安装在0区。现场仪表采用本安防爆,从而允许进行带电的在线维护。其二,本方案的应用十分简洁。每段总线只敷设一根主干电缆去现场,尽可能靠近装置的危险区1区。

  7 结束语

  总之,FF现场总线的配电,短路保护和防爆的应用已经找到了比较理想的实用方案。现场总线技术是控制、计算机、通讯技术的交叉与集成,几乎涵盖了所有连续、离散工业领域,如过程自动化、制造加工自动化、楼半自动化、家庭自动化等等。它的出现和快速发展体现了控制领域对降低成本、提高可靠性、增强可维护性和提高数据采集的智能化的要求。现场总线技术的发展体现为两个方面:一个是低速现场总线领域的不断发展和完善;另一个是高速现场总线技术的发展。而目前现场总线产品主要是低速总线产品,应用于运行速率较低的领域,对网络的性能要求不是很高。从实际应用状况看,大多数现场总线,都能较好地实现速率要求较低的过程控制。因此,在速率要求较低的控制领域,谁都很难统一整个市场。就目前而言,由于FF基金会几乎集中了世界上主要自动化仪表制造商,其全球影响力日益增加,但其在中国市场营销力度似乎不足,市场份额不是很高,LonWorks形成了全面的分工合作体系,在国内有一些实质性的进展,在楼宇自动化、家庭自动化、智能通信产品等方面,LonWorks则具有独特的优势。

关键字:FF现场总线  配电  短路保护  防爆 引用地址:浅谈FF现场总线的配电与短路保护及其防爆

上一篇:纺织生产控制系统中现场总线技术的研究及应用设计
下一篇:Canopen总线与Canopen绝对值编码器

推荐阅读最新更新时间:2024-05-03 00:35

新能源汽车中高压配电盒振动疲劳仿真设计方案
导读:据国际能源机构统计,2020年全球电动汽车销售额达到1,800亿美元,同比增长了41%。与此同时,中国国家能源局也推出了新能源汽车发展路线图,计划到2035年新能源汽车在整个汽车市场的占比达到80%以上。根据交通运输部数据,截至2021年底,中国新能源汽车保有量已经超过了510万辆,其中纯电动汽车占比达到了85%。 随着环保、节能等观念不断普及,越来越多的车企开始涉足新能源汽车领域,而且从政策层面也在不断推动新能源汽车的普及,使得新能源汽车在中国以及全球市场中的竞争力日益增强。随着电池技术和其他关键技术的不断改进和发展,新能源汽车的续航里程和性能逐渐提高,逐渐逼近传统燃油汽车,越来越多的证据表明新能源汽车正在逐渐取代传统
[嵌入式]
新能源汽车中高压<font color='red'>配电</font>盒振动疲劳仿真设计方案
PROFET Load Guard 12V 为汽车ADAS和配电系统保驾护航
PROFET Load Guard 12V通过可调节过流限制和容性负载开关模式为汽车ADAS和配电系统保驾护航 【2023 年 4 月 24日,德国慕尼黑讯】如今,几乎每辆新车都配备了高级驾驶辅助系统(ADAS),汽车行业正在努力实现更高级别的自动化。这类安全关键型系统既需要可靠且智能的板网架构,也需要更多的舒适功能,从而导致其负载数量不断增加。E/E架构因此需要可靠且智能的解决方案来对敏感负荷进行保护以防出现电流过载,并确保实现配电系统与故障的快速隔离。 为了满足这些需求,英飞凌科技股份公司推出全新车规级智能高边开关产品组合PROFET™ Load Guard 12V。可调过流限制与容性负载开关(CLS)模式的组合能
[汽车电子]
PROFET Load Guard 12V 为汽车ADAS和<font color='red'>配电</font>系统保驾护航
建设世界一流配电网 助力杭州能级再提升
华灯初上,市民纷纷走向西湖,到杭州十条“最美秋日路”打卡;钱塘东岸,滩涂上灯火通明,113公顷亚运村平地起高楼。站在“后峰会、前亚运”时间节点,有着“人间天堂”美誉的杭州正加快建设独特韵味别样精彩的世界名城,融入长三角一体化发展,打造有颜值、有实力的发展强劲活跃增长极。 城市面貌日新月异、经济蓬勃发展的背后,浙江杭州供电公司认真落实国家电网有限公司世界一流配电网建设总体部署,紧扣实用实效打造安全可靠、优质高效、绿色低碳、智能互动的世界一流城市配电网,为杭州能级再提升注入磅礴动力。 网格化规划 精准衔接城市发展 2017年年末,杭州市提出拥江发展战略,打造以钱塘江为轴的发展核心区。拥江发展战略正步步推进、
[新能源]
防爆电机的启动方式有哪些
  防爆电机启动方式之变频器启动   防爆电机用变频器启动时,可以较低频率启动,此时转速低启动电流小,不会产生冲击转矩,启动平滑,对电机绕组冲击小,可以有效延长防爆电机的使用寿命。   变频器是近年来电机控制领域技术含量高,控制功能效果好,可以通过改变电网的频率来调节防爆电机的额转速与转矩,因为涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,主要用在需要调速并且对速度控制要求高的领域。   下面来理一下用变频器的启动过程,电动机在起动过程中,变频器所输出的频率和电压是逐渐增大的      频率从最低频率(如0HZ)起按预置的加速时间逐渐上升,如果起动频率设置为3HZ,以4极电动机为例,刚起动时其同步转
[嵌入式]
<font color='red'>防爆</font>电机的启动方式有哪些
普发真空推出全新 HiScroll ATEX 防爆涡旋泵
普发真空推出全新 HiScroll ATEX 防爆涡旋泵 • 符合欧洲防爆产品指令要求,适用于诸多防爆设备应用领域 • 设计紧凑,安静运行,提供高效可靠的服务 • 适合用于分析、工业或研发领域 2021 年7月28日,上海——普发真空推出全新 HiScroll ATEX 系列涡旋泵,因其于潜在爆炸性环境中的极高安全性,符合欧洲防爆产品指令要求(即现行ATEX防爆指令),适用于抽送易爆气体。 根据允许使用条件,ATEX 防爆指令将泵分为不同类别。HiScroll ATEX 与介质接触的区域符合 3G 设备类别,温度等级为 T4,这意味着它可以泵送防爆组别 IIC 及以下的所有气体,甚至包括易燃的氢气。此外,该
[工业控制]
普发真空推出全新 HiScroll ATEX <font color='red'>防爆</font>涡旋泵
CAN总线在智能配电系统中的应用
引言 目前,计算机机房的配电系统大都使用UPS,保证了机房的可靠供电。UPS系统的每一路电流都采用自动空气断路器进行过流保护,这种保护是有效的,但不是智能的,不能设置,不会报警,更没有供电及故障报警信息的纪录,与高可靠性的要求不相符,有进一步改造的必要和需求。本文为计算机机房开发的智能配电系统iPDS(Intelligent Power Distribution System)很好地满足了以上要求,具有智能化和人性化两大特点。本系统采用CAN总线进行数据的交互传递,很好地满足了系统可靠性、实时性及成本方面的要求。 系统设计 本智能系统对机房内各路电源的电流、漏电流、零地电压、自动空气断路器的运行状态等信息进行实时监
[网络通信]
可提供短路保护的浪涌限幅器
对于包含有大电容量的装置而言,控制浪涌电流成为一大难题。最简单的方法就是将浪涌限幅电阻器与电容器组串联,但电阻器会浪费功率并增加压降。图1所示电路解决了这一难题并能提供其它优势。在启动时,双极型 PNP晶体管Q2使N沟道功率MOSFET晶体管Q1保持关断,直到电容器Cl两端的电压高到足以关断Q2的电平为止。在此时间间隔内,电阻器R1为C1及电路其它元件提供启动电流。当Q2关断时,Q1导通并在 R1两端提供一条低阻通道。当关闭外部电源时,电路随C1放电而复位。   作为额外好处,该电路还可提供短路负载保护。随着通过Q1的电流增大,Q1两端的压降也由于Q1内部导通电阻而增大。当Q1两端的电压降至约 0.6V(Q2的 VBE(ON)电压)
[应用]
一张图读懂我国输配电价改革历程
“五”在我国经济安排中是一个重要的数字,“五年一规划”便是一大特色。以2015年3月正式发布的“中发”9号文为标志,新一轮电力体制改革到目前已经整整走过了五个年头,毫无疑问到了一个关键的节点。 五年来,我国电力体制改革逐步深入推进,通过电网成本监审、输配电价核定来“管住中间”,通过不断推动交易机构规范独立运行、持续扩大电力市场化交易规模、加快推进增量配电业务改革、稳步推进电力现货市场建设来“放开两头”,电力体制机制创新不断赢得新突破。 至此新一轮电力体制改革五周年之际,爱能界推出“电价改革”系列专题,回顾电改历程、展示改革成效,同时也供读者交流参考。 我国输配电价改革始于2002年的电力体制改革。国发 5号文将电价划
[新能源]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved