浅析保护汽车逆变器设计中的功率晶体管的方案

发布者:mb5362443最新更新时间:2016-08-26 来源: eefocus关键字:汽车逆变器  功率晶体管 手机看文章 扫描二维码
随时随地手机看文章
随着油电混合车和电动车技术的演进,逆变器驱动技术已经进入汽车领域,从空调机和加热系统等低功率应用,一直到驱动和再生制动系统等高功率应用,所有这些系统的共通点是需要通过保护逆变器设计中的功率开关晶体管来最大限度地提高工作寿命。

汽车系统中的逆变器为电动机控制电源的关键部件,它可以把相对较低的直流电池电压转换成为交流高电压,其中使用功率开关来调节能量的递送,请参考图1。通过微控制器送出开关信号,并利用隔离门驱动器作为低电压微控制器和高电压功率开关间的接口。

许多新形态的功率开关,如碳化硅,都被评估是否可以使用于汽车逆变器中,但目前最具竞争力的还是IGBT。长久以来,这些功率晶体管已经被广泛应用于高电压和高功率的处理上,但在发展过程中却存在缺点,为了把IGBT中的功率损耗降到最低,新一代的IGBT产品寻求降低开关和传导损耗,不过,为了降低传递损耗,通常必须在强固性上做出让步。

图1 汽车系统中的逆变器使用功率开关IGBT器件控制电动机电源,但这些器件必须加以保护以确保长时间的工作寿命。

错误保护避免损坏

降低IGBT传导损耗通常会引起短路电流的增加,从而缩减短路的存活时间,许多逆变器的内部或外部错误情况会造成逆变器中一或多个IGBT短路或类似短路的过载情况,包括相位到相位输出短路、逆变器桥接脚的过冲,以及IGBT低驱动电压。由于IGBT会因这些错误而受到损坏,因此对于逆变器设计,快速并且可靠的IGBT短路检测和保护就变得非常重要。

但并非所有这些错误都可以使用相位电流传感器进行检测,一个比较好的替代做法是分别独立检测每个IGBT的负载电流大小。检测负载电流大小有几个方法,如使用分流电阻或射极分离的IGBT,可以产生正比于IGBT负载电流的电压信号,当信号超过设定的阀值大小时就会触发保护机制。不过IGBT的最大可容忍电流会依采用的工艺、工作温度以及门电压而定,因此在设定负载电流触发阀值时必须非常保守,以便限制IGBT的工作范围。

第三种做法是通过监视集电极到发射极的电压(VCE)来检测IGBT脱离饱和状态的时间,在普通工作情况下IGBT处于饱和模式而VCE低,当发生输出短路或低门极驱动情况时,IGBT会进入线性模式并且VCE上升,造成功率损耗过大引发器件失效,检测这个去饱和(DESAT)情况可以达到和监视输出电流相同的错误检测结果,但却有监视IGBT真实工作情况,有效降低许多外在因素干扰的优点,带来IGBT更高功率的使用。

图2 集成了错误检测和软关断,Avago的ACPL-38JT IGBT门驱动光电耦合器可以解决可能破坏逆变器功率开关的错误情况

和检测错误同等重要的是,逆变器本身设计的错误分辨能力,当检测到错误情况时,极可能有较大的电流经过,如果IGBT关断过于快速,那么快速的电流变化(di/dt)以及无可避免的连接寄生电感就有可能造成回流EMF超过IGBT的最高电压容忍大小,带来IGBT的损坏并破坏过电流保护机制。这个问题可以通过实现IGBT的软关断来减轻,利用延长错误发生时的门极放电时间降低电压的变化速度。

错误分辨能力也有着系统的考量,自动错误检测可以配置为同时关断所有其他门驱动来实现,另一方面,错误检测也可设计为每个IGBT独立进行错误检测和关断,允许通常较为适合汽车牵引应用的和缓错误处理和关断策略。自动错误检测也可以包含提供信号给负责管理汽车动力系统的微控制器,带来额外的响应选择。

可靠性是基本要求

在汽车系统中实现这些错误检测和IGBT保护电路必须有几个关键点,包括低成本、小尺寸以及强固性。由于汽车应用对于质量和可靠性的期待通常要比其他许多消费类和工业应用高上许多,因此强固性非常重要,进一步说,在更加恶劣的环境,包括极广的工作温度条件以及高幅射和感应电磁噪声下则必须具备更高的可靠性。

高度集成方案,如图2中Avago的ACPL-38JT门驱动光电耦合器通过集成去饱合检测和欠压锁定(UVLO, Under Voltage LockOut)电路,以及隔离的错误信号和软关断等多个功能到IGBT门驱动器中满足了所有这些需求。Avago的光隔离功能包括环绕光接收器的透明法拉第屏蔽协助降低电磁噪声耦合,并使用特别设计的LED确保高温条件下的更长工作寿命,内置的保护电路可以节省数个分立器件而降低成本,并通过解决所有错误情况,包括可能破坏功率开关晶体管的低门驱动电压提高系统的可靠性。

在门驱动和IGBT保护电路上使用单一集成器件也可以通过消除分立器件失效点协助提高系统的可靠性,另外,集成器件也可借由完整和通过预先测试的设计而有助于缩短设计和通过监管审查时间。举例来说,ACPL-38JT就依循TS 16949和AEC-Q100汽车准则进行生产和测试,工作温度范围达到- 40℃到125℃。

随着高功率电气系统在汽车设计中的角色越来越加重要,错误保护成为确保长时间工作寿命的必备条件,在逆变器设计中的功率开关使用同时提供有检测和响应机制的集成方案,可以通过紧凑、低成本并且高可靠性的方式满足这个需求。
关键字:汽车逆变器  功率晶体管 引用地址:浅析保护汽车逆变器设计中的功率晶体管的方案

上一篇:功率模块在混合动力和电动汽车上的潜在应用
下一篇:三菱电机以高品质液晶模块专攻工业和汽车车载市场

推荐阅读最新更新时间:2024-05-03 00:37

如何使用TDA2040和功率晶体管构建一个40W放大器
功率放大器是声音电子的一部分。它旨在最大化给定输入信号的功率幅度。在声音电子学中,运算放大器增加了信号的电压,但无法提供驱动负载所需的电流。在本教程中,我们将使用 TDA2040 功率放大器 IC 和两个功率晶体管构建一个 40W 放大器,并连接一个 4 欧姆阻抗扬声器。 放大器的结构拓扑 在放大器链系统中,功率放大器用于负载前的最后或最后阶段。通常,声音放大器系统使用以下拓扑结构,如框图所示 如上框图所示,功率放大器是直接连接到负载的最后一级。通常,在功率放大器之前,使用前置放大器和电压控制放大器校正信号。此外,在某些情况下,如果需要音调控制,则在功率放大器之前添加音调控制电路。 了解您的负载 在音频放大器系统的情况
[嵌入式]
如何使用TDA2040和<font color='red'>功率</font><font color='red'>晶体管</font>构建一个40W放大器
日产汽车开发出采用SiC二极管的汽车逆变器
日产汽车开发出了采用SiC二极管的汽车逆变器。为“全球第一款”(日产)。日产已经把该逆变器配备在该公司的燃料电池车“X-TRAIL FCV”上,并开始行驶实验。通过把二极管材料由原来的Si变更为SiC,今后有望实现逆变器的小型轻量化、提高可靠性。对于电动汽车而言,逆变器的大小一直是布局的制约因素之一。 SiC元件作为具有优异特性的新一代功率半导体备受瞩目。SiC的绝缘破坏电场比Si大1位数左右,理论上SiC导通电阻可比Si减小2位数以上。原因是导通电阻与绝缘破坏电场3次方成反比。导通电阻小,因此可减小使用电源电路时的耗电量。另外,SiC的导热率比Si高、散热性好,因此有望缩小冷却装置。着眼于这些特性,多家厂商和研究机构
[汽车电子]
罗姆的第4代SiC MOSFET成功应用于日立安斯泰莫的纯电动汽车逆变器
从2025年起将向全球电动汽车供货,助力延长续航里程和系统的小型化 全球知名半导体制造商罗姆(总部位于日本京都市)的第4代SiC MOSFET和栅极驱动器IC已被日本先进的汽车零部件制造商日立安斯泰莫株式会社(以下简称“日立安斯泰莫”)用于其纯电动汽车(以下简称“EV”)的逆变器。 在全球实现无碳社会的努力中,汽车的电动化进程加速,在这种背景下,开发更高效、更小型、更轻量的电动动力总成系统已经成为必经之路。尤其是在EV领域,为了延长续航里程并减小车载电池的尺寸,提高发挥驱动核心作用的逆变器的效率已成为一个重要课题,业内对碳化硅功率元器件寄予厚望。 罗姆自2010年在全球率先开始量产SiC MOSFET以来,在S
[电源管理]
罗姆的第4代SiC MOSFET成功应用于日立安斯泰莫的纯电动<font color='red'>汽车</font><font color='red'>逆变器</font>
飞思卡尔通过射频功率LDMOS晶体管为广播电视发射器设立了新基准
飞思卡尔通过射频功率LDMOS晶体管为广播电视发射器设立了新基准,新的MRFE6VP8600H在完整UHF频段上带来最佳的输出功率、效率和耐用性 2011年9月9日,德克萨斯州奥斯汀市 – 飞思卡尔半导体 (NYSE:FSL)宣布推出RF功率LDMOS晶体管,该产品结合了业界最高的输出功率、效率和其同类竞争器件中最强的耐用性,专门面向UHF广播电视应用而设计。 作为飞思卡尔RF功率LDMOS晶体管系列的最新成员,MRFE6VP8600H与其上一代产品相比输出功率提高39%,其设计在满足ATSC、DVB-T和ISDB-T等许多主要数字传输标准要求的同时带来最高性能。MRFE6VP8600H 为电视发射机制造商和广播公司提供了显著
[手机便携]
弗劳恩霍夫研究所提出新逆变器设计 有望将电动汽车的续航里程提升6%
谈到提升 电动汽车 的续航里程,人们首先想到的是电池技术。实际上,传动系统也起着举足轻重的作用,比如可将电池中的直流电转变成电机中使用的交流电的逆变器。 (图片来源:弗劳恩霍夫研究所) 据外媒报道,德国弗劳恩霍夫可靠性和微集成研究所(Fraunhofer Institute for Reliability and Microintegration)的专家,提出一种新的功率逆变器设计,其工作效率更高,预计可将电动汽车的续航里程提升6%。 在车辆行驶过程中,作为电池和电机之间的中间媒介,功率逆变器及其晶体管需要处理大电流,这会导致它们温度升高。为了解决这一问题,电动汽车中的功率逆变器采用固态冷却元件,其特征是将导管置于水
[汽车电子]
弗劳恩霍夫研究所提出新<font color='red'>逆变器</font>设计 有望将电动<font color='red'>汽车</font>的续航里程提升6%
CISSOID 和 Silicon Mobility 宣布推出新能源汽车紧凑及高效碳化硅逆变器
高温半导体和功率模块方面的领导性企业CISSOID 公司,与技术领先的、为新能源汽车超快速和超高安全性实时控制提供现场可编程控制器单元(FPCU)半导体架构的发明者Silicon Mobility公司共同宣布: Silicon Mobility 的 OLEA® FPCU 控制器已与 CISSOID 的碳化硅(SiC) 智能功率模块(IPM)平台实现了集成,双方携手打造的这一全新高集成度平台将加速用于电动汽车电机驱动的紧凑型高效碳化硅逆变器的开发。 该合作伙伴关系将提供一个碳化硅逆变器的模块化平台,从而提供高度集成的硬件和优化的软件:功率模块及其具有保护和故障管理功能的栅极驱动器、超快速FPCU控制器及其针对电机控制优化的应用软
[汽车电子]
CISSOID 和 Silicon Mobility 宣布推出新能源<font color='red'>汽车</font>紧凑及高效碳化硅<font color='red'>逆变器</font>
基于TL494的汽车12V-HID灯逆变器电路
TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。基于TL494的汽车12V-HID灯 逆变器电路 :
[电源管理]
基于TL494的<font color='red'>汽车</font>12V-HID灯<font color='red'>逆变器</font>电路
飞思卡尔新型Airfast RF功率方案重新定义晶体管性能
     过去,RF功率的性能完全取决于线性效率。如今,开发者遇到更加复杂的挑战:需要满足多种标准、信号变化和严格的带宽要求等。针对这一问题,飞思卡尔半导体推出新型硅片RF LDMOS功率晶体管Airfast RF功率解决方案,将性能和能效提升至新的高度。飞思卡尔通过新的产品系列解决了这种模式转变带来的问题,该产品系列基于一种更加全面的、完整的系统级 RF功率技术方法。       根据ABI Research的报告,作为优秀的RF功率解决方案供应商,飞思卡尔拥有57%的市场份额。飞思卡尔的Airfast RF功率解决方案的设计目的是通过广泛的投资和创新巩固并扩展其市场份额,为全球顶级无线基础设施设备OEM提供优势。飞思卡尔在交
[手机便携]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved