高速、高精度始终是
数控技术追求的目标。在高速加工中,必须要求各运动轴能在极短的时间内达到给定的速度并能在高速行程中瞬间准停。如果仅从时间上去考虑缩短过渡过程,而不对机床的加减速动态过程进行合理的控制,必将给机床结构带来很大的冲击。随着计算机总线技术越来越成熟,数控系统也由固定模式发展为具有开放性结构,能方便用户进行客制化重组的柔性模式。结合数据库原理,将影响系统过渡过程的加减速曲线,采用变结构控制方式,能有效提高
数控机床的动态性能和稳态精度。
变加减速结构控制原理
传统数控系统中,一般由系统程序直接实现单一特定的加减速控制。它无法保证在机床启停频繁的情况下,同时满足高进给速度的瞬间起停和机床运行的平稳性。为解决此问题,一方面要求数控系统能因机而异、因时而异来动态确定加减速控制规律;另一方面,需在控制系统中采用特殊方法来实现这种加减速曲线。本文提出的变加减速结构控制方法采用数据库原理,将加减速控制分为加减速描述与实施两部分,并将加减速描述与系统程序相分离。这样,若要改变系统的加减速控制规律只需独立地修改加减速描述数据,而不需要修改数控系统程序,从而为用户提供一种开放的改变加减速曲线新方法。其原理为:将各种理想的加减速曲线事先进行数字式处理,得到其离散化,并以样板数表的形式存放于数控系统内的加减速曲线库中。在数控系统软件中,则设计一条通用的与加减速数据库内容无关的控制通道,由其独立完成加减速计算和轨迹控制。该方法的实现原理如图1所示。
图1 变加减速结构控制原理框图
图1中,加减速曲线库中存放着各种样板曲线。系统运行时,首先根据数据处理模块给出的有关控制数据和来自检测反馈环节的机床实际运行数据进行加减速分析。如需加减速控制,则通知曲线选择模块从加减速曲线库中选出最合适的加减速曲线,并发出加减速控制指令给加减速计算模块,由其根据所选定的加减速曲线计算出当前采样周期的瞬时速度。进一步由插补轨迹计算模块生成工作台运动轨迹,并发出运动指令送往驱动装置,最后由驱动装置以希望的加减速控制规律驱动机床运动,从而使机床运动的动态特性达到最佳。
三轴运动工作台组成及特点
整个系统以基于“工业PC机+专业运动控制卡”为核心,采用松下数字交流伺服系统构成一个开放式硬件结构。同时配备内容丰富、功能强大的运动函数库,采用VC++面向对象的编程技术,实现PC机、运动控制卡和伺服驱动器之间的通讯,其结构如图2所示。
图2 三轴运动系统组成框图
PC机主要实现加工程序的输入、编辑、参数设置、运动状态显示以及加减速分析计算等非实时控制。运动控制卡完成各运动轴插补轨迹计算、输出脉冲/方向运动指令信号以及接收机床上一些与运动控制有关的I/O量输入。其中,脉冲信号控制电机所走的步数,方向信号控制电机正反转,以实现三轴的位置控制。X轴、Y轴、Z轴原点、限位检测是通过一组机械开关来实现,原点检测开关用来生成用户三维运动系统坐标系原点,限位检测开关确保每轴工作行程极限。这些状态信号经逻辑电平整形电路、光电隔离电路后送入运动控制卡状态寄存器中,由CPU随时读出,达到对I/O状态信号的检测。在硬件上,由于采用了光电隔离措施,这样,既隔离了外设对内部数字系统的干扰,又能有效地防止过电压、过电流等外界突发事件对计算机系统的损坏,大大提高了系统的控制精度和可靠性。
本系统充分发挥了PC机软件资源丰富和计算速度快的优点,吸收CAD/CAM的特点,在利用造型软件生成零件图后,再利用数控系统转化为加工G代码,将指令G代码与机床实际位置进行分析比较产生瞬时速度,然后由板卡将其解释为运动轨迹控制函数,最后通过调用运动函数库内的插补程序段,输出脉冲和方向信号,控制半闭环位置伺服系统带动工作台运转,实现所希望的空间轨迹路径动态特性和稳态精度。
基于松下交流伺服电机驱动器半闭环位置控制的实现
在松下伺服驱动器接线端子上,PULS1、SIGN1分别与运动控制器的脉冲信号和方向信号相连,PULS2、SIGN2接+5V信号,形成集电极开路的位置传输信号。COM+,COM-分别接+15V电源正负端。SRV-ON与COM-相连。这样,就完成了位置控制模式下的基本连线。其它连线可根据系统的需要进行适当连接。参数设置通过触摸面板进行,控制方式选择置为位置控制,转矩限制置为输入无效,驱动禁止置为输入无效,指令脉冲输入方式选择置为脉冲/符号方式,指令脉冲禁止置为输入无效。每转输出脉冲数置为2500。电子齿轮比可根据实际需要进行设置。由于伺服电机通过联轴器与工作台的滚株丝杠相连,机械刚性高,将自动增益调整时,机械刚性置为9,保证整个传动系统的高速响应性。增益参数采用自动调整方式:按照预定(内部设定)的模式使电机加速和减速,从所需转矩计算负荷的惯量,然后根据惯量,自动地决定适当的增益。其它参数按出厂时的缺省设置。由于传动机构采用了半闭环交流伺服驱动,控制精度和运行速度得到极大的提高,大大提高了产品的性价比。
在位置控制方式下,伺服驱动器接收运动控制器发出的位置指令信号(脉冲/方向),送入脉冲列形态,经电子齿轮分倍频后,在偏差可逆计数器中与反馈脉冲信号比较后形成偏差信号。反馈脉冲是由光电编码器检测到电机旋转时所产生的实际脉冲数,经四倍频后产生的。位置偏差信号经位置环的复合前馈控制器调节后,形成速度指令信号。速度指令信号与速度反馈信号(与位置检测装置相同)比较后的偏差信号经速度环比例积分控制器调节后产生电流指令信号,在电流环中经矢量变换后,由SPWM输出转矩电流,控制交流伺服电机的运行。位置控制精度由光电编码器每转产生的脉冲数控制。它分增量式光电编码器和绝对式光电编码器。增量式编码器构造简单,易于掌握,平均寿命长,分辨率高,实际应用较多。本系统采用的是增量式光电编码器。绝对式光电编码器按二进制编码输出,信号线多,由于精度取决于位数,所以高分辨率不易得到。但是这种编码器即使不动时也能输出绝对角度信息,主要用于全闭环高级数控机床中。松下公司增量式光电编码器伺服电机驱动器方框图如图3所示:
图3 松下公司伺服驱动器控制方框图
结语
合理的自动加减速控制是保证高速运动系统动态性能和稳态精度的重要环节。传统的基于固定曲线的自动加减速控制由于缺乏柔性,不易保证在机床运行平稳的前提下,实现以过渡过程时间最短为目标的最优加减速控制规律,难以满足高速加工对精度的要求。采用变加减速结构,利用系统的开放性,将加减速描述与数控系统程序相分离,使得改变系统加减速性能时只需独立地修改加减速描述数据,它可方便地用实时离散数据库来实现。这样,系统可按实际情况改变升降速控制曲线,保证机床运行的平滑性,是一种适合于高速加工的柔性自动加减速控制方式。
关键字:开放性 数控系统 变加减速
引用地址:
变加减速结构在开放性数控系统中的应用
推荐阅读最新更新时间:2024-05-03 00:39
第四届CODESYS技术大会暨基于IEC 61131 - 3 的数控系统及机器人软件平台技术论坛
2013年10月15日,由德国3S软件(中国)- 欧德神思软件系统(北京)公司主办的“基于IEC 61131 - 3 的数控系统及机器人软件平台技术论坛”在工大建国饭店隆重召开,德国3S软件公司大中华区总经理-马立新先生首先致欢迎词。本届大会得到了中国机械工业联合会、中国机器人产业联盟、中国软件行业协会、中国自动化学会、全国工业机械电气系统标准化技术委员会等权威部门的大力支持。来自全国各地的近200位的专家、学者和技术人员出席了会议,并就机器人软件开发平台的现状与发展趋势进行了深入的探讨。 CODESYS技术大会现场座无虚席 目前,为了使数控系统和机器人应用编程更加标准化和网络化,
[工业控制]
智能移动设备的数控系统研究
引言
智能制造、协同制造等先进制造模式对车间数字化制造设备的要求越来越高。车间是一个不确定的系统,而人具有形象思维的能力,把人的智能和生产设备的自动化结合起来将为制造企业的信息集成和协同制造创造很好的条件,而开展基于智能移动设备的数控系统的研究,即掌上数控系统(PalmCNC),将为底层生产设备的控制和上层管理层的信息交流提供很好的平台。
1 数控系统的模型
1.1 掌上数控系统硬件平台的选择
掌上数控系统硬件平台选择Pocket PC。它的优点是可以在任何时间、任何地点通过无线通信技术(802.11或蓝牙)得到想要的信息,同时也能在任何时间任何地点对信息进行编辑和发布。这种获取和编辑发布信息的实时性特
[嵌入式]
基于FPGA的远距离测温器数控系统设计
0 引言 在一些特殊的科研场所和工业生产单位,出于各种条件限制,仪表往往不能就近测量物体实际温度;而以往所使用的一些传感器在使用时受到各种环境因素的影响,使得传感器测量得到的温度不能精确地反映被测物体的温度。因此,人们需要找寻一种远距离测温器,能够精确测量物体温度,并能实时监控温度数据。 远距离测温器是一种被动式的温度遥感器,可用于远距离探测物体的温度,在科学研究和工业生产中发挥了重要作用。由于在使用时人们对测温器的测量范围、灵敏度要求很高,同时由于当今遥感仪器的设计越来越趋于低功耗高密度及小型化,因此,要求测温器的数据处理与控制系统具有高可靠性、高分辨率、实时性、体积小等特点。由于FPGA的功能强大,逻辑速度快,可以用多种接口电平
[测试测量]
基于PCI总线的专用开放式数控系统研制
PC I总线规范十分复杂,开发接口设备具有相当 的难度,在设计中需注意以下问题。PCI的时钟扇出 能力较差,一般只支持2~3个负载; PC I接口逻辑复 杂, 总线的接口电路大致需要1000门的逻辑才能实 现,这些逻辑电路主要作为逻辑译码、时序控制、寄存 器F IFO等。PCI总线接口逻辑的设计工作,不是一般 的中小规模TTL 或COMS电路所能实现的,所以,本 文的目标芯片选PCI9054,同时选用TMS320F2812作 为轴控芯片。PCI9054是一种多功能、多模态的接口 控制芯片,其功能配置参见文献 。经分析,与 TMS320F2812总线接口时, PCI9054选C模式工作较 适合,图1是PC I9054在
[嵌入式]
高阶手机多媒体应用及开放性技术趋势
一台小小的随身手机,功能性却是日新月异。过去,它只是一只单纯通信功能的装置,但和网路及消费性应用相遇后,其定位已逐渐朝向一台个人化的多媒体设备发展。现阶段,资讯管理与照相已经成为颇通用的功能,游戏、铃声、音乐下载与播放的效果也不断在提升中;录影、录音也成了手机当中极具加值性的功能。 在不同的地区,也有不同的发展:在欧洲,手机被用进行线上付款;在日本,移动娱乐相当普及;而在美国,使用手机GPS定位服务已受到重视,此功能不仅能做交通资讯的辅助之用,也能在紧急时送出个人的求救及追踪信号。那么,下一步呢? 随着3G、HSDPA或Wi-Fi等更高频宽连结的推出,新闻、运动、广告等视频短片会成为愈来愈重要的服务;在DVB-H、
[手机便携]
伺服控制技术的应用发展
引言 关于伺服控制的概念:伺服控制系统(伺服单元)是具有位置、速度、或加速度闭环控制的机械系统,如图1所示。 图1中包括:被控对象,伺服电机,功率驱动器,反馈控制器、运动控制器。除了被控对象以外的部分,称为伺服单元。 图1 典型伺服控制系统 伺服单元经历了三个发展的里程碑: (1)传统伺服单元,如图2(a),由驱动器、伺服控制器和伺服电机组成; (2)现代伺服单元,如图2(b),将驱动器和伺服控制器集成为整体; (3)面向未来的伺服单元,如图2(b),进一步将驱动器、伺服控制器和伺服电机集成为伺服一体机。 图2 伺服单元的发展 伺服一体机的主要特点是:高密度、体积小、适于网络控制和具有更高的可靠性。它内含:控制器内核和功率驱动器
[嵌入式]
3PRS-XY混联型并联运动机床数控系统研究
1 引言 并联运动机床(Parallel Kinematics Machine Tool,PKM),简称并联机床(Parallel MachineT001),也称虚拟轴机床,它以空间并联机构为基础,充分利用计算机数字控制的潜力,以软件取代部分硬件,以电气装置和电子器件取代部分机械传动,使将近两个世纪以来以笛卡儿坐标直线移动为基础的机床结构和运动学原理发生了根本变化。混联型并联运动机床(HybridPKM),简称混联机床,属于并联运动机床概念范畴。混联结构包括串并联型、并串联型和复杂混联型,由少自由度纯并联机构再串联其它运动方向的驱动机构构成。混联运动机床混合了并联机构和串联机构,并兼具两者的特点。混联运动机床在很大程度上解决了纯
[嵌入式]
机床数控系统的抗干扰研究
工业现场的环境条件往往比较恶劣,数控机床在工作时,与电网、空间与周围环境发生了联系而受到干扰。若系统经不住干扰的冲击,各电气功能模块将不能正常工作,微控系统往往会因干扰产生程序“跑飞”,传感器模块将会输出伪信号,功率驱动模块将会输出畸变的驱动信号,使执行机构动作失常。因此,为提高生产的安全性和控制精度,消除由于干扰出现的故障,应在系统设计时,考虑周全,采取有效的抗干扰措施。本文分析常见的干扰源及其产生的破坏性,探索从软、硬件两方面提高系统抗干扰的方法。 1 曲轴磨床数控系统的组成
曲轴磨床采用PLC数控系统,其主机为欧姆龙型可编程控制器,所有加工动作均由PLC程序控制。系统的软、硬件均采用积木式结构,针对不同的要求配置相
[嵌入式]