1.整流变压器的冷却介质有哪几种?
要把热量从变频器中带出来,可以借助的介质一般有三种:空气、水、油。高压变频器的发热部件主要是两部分:一是整流变压器,二是功率元件。变压器在早期主要采用油冷却方式,即把变压器浸泡在油箱中,由于油比空气的比热大、绝缘强度高,所以这种散热方式目前在大功率变压器上还是主流。
但是,由于油品需要维护,引出线处的密封不好解决,随着绝缘材料的进步,在中小功率等级,干式变压器已经占主导地位。干式变压器借助于空气进行冷却。变压器还可以采用水冷的方式,即将变压器的线圈做成中空的,内部通纯净水,利用纯净水带走热量。
2.变压器设计的基本问题是什么?
变压器设计的基本问题是磁通和电流密度。变压器的电流与容量成正比,电流密度的大小(即导线的粗细)按照导体的发热量来考虑。对于磁通,电磁学的基本关系式为u=4.44fwΦ,其中u为电压;f为频率,在这里为50Hz,定值;w为线圈的匝数;Φ是磁通量。由于硅钢片的磁通密度B受到材料的限制,一般仅能设计到1.4-1.8特斯拉,而Φ=,所以,要增大Φ,一般只能增大铁芯的截面积。
变压器的铁芯一般为三相柱式,铁芯的截面积按照上述公式可以确定,铁芯窗口的大小则要考虑把线圈放进去为原则。
容量越大的变压器,导线越粗,铁芯的窗口就需要越大。在变压器的设计中,铜和铁的用量可以均衡考虑。因为一旦变压器的容量确定了,电流就确定了,导线的粗细也就确定了,增大匝数W,磁通Φ就可以小一些,铁芯的截面积就可以小一些,但是要把这些匝数绕进去,铁芯的窗口要大一些;相反,减小匝数W,磁通Φ就要大一些,铁芯的截面积要大一些,但是铁芯的窗口可以小一些。
3.变压器的容量和什么有关?
由上述第二个问题的分析可以看出,铁芯的选择与电压有关,而导线的选择与电流有关,即导线的粗细直接与发热量有关。也就是说,变压器的容量只与发热量有关。对于一个设计好的变压器,如果在散热不好环境中工作,假如为1000KVA,如果增强散热能力,则有可能工作在1250KVA。另外,变压器的标称容量还与允许的温升有关,例如,如果一台1000KVA的变压器,允许温升为100K,如果在特殊的情况下,可以允许其工作到120K,则其容量就不止1000KVA。
由此也可以看出,如果改善变压器的散热条件,则可以增大其标称容量,反过来说,对于相同容量的变频器,可以减小变压器柜的体积。所以在有些投标过程中,竞争对手故意标称较大的变压器容量,给用户设计裕量较大的假象,实际上是没有意义的,关键还要看变压器的体积和散热方式。
4.为什么电流源型变频器需要较大的变压器容量?
变压器的设计一般只看额定容量,而不看额定功率,因为其电流只与额定容量有关。对于电压源型变频器,由于其输入功率因数接近于1,所以额定容量与额定功率几乎相等。电流源型变频器则不然,其输入侧变压器功率因数最多等于负载异步电机的功率因数,所以对于相同的负载电机,其额定容量要比电压源型变频器的变压器大一些。
5.什么是干式变压器的绝缘等级?
干式变压器的绝缘等级,并不是绝缘强度的概念,而是允许的温升的标准。比如,B级绝缘允许工作到130℃,H级绝缘允许工作到180℃,所以,H级绝缘允许导线选得细一些。
6.什么叫“H级绝缘,用B级考核温升”?
就是说,变压器采用H级绝缘材料,但是各个点的工作温度不允许超过B级绝缘所允许的工作温度。这实际上是对绝缘材料的一种浪费,但是,变压器的过载能力会很强。
关键字:变频器 整流变压器
引用地址:
有关变频器中整流变压器的几个问题
推荐阅读最新更新时间:2024-05-03 00:41
变频器的维修法则
一、静态测试 1、测试整流电路 找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复 以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。 2、测试逆变电路 将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障
[嵌入式]
IGBT助变频器实现高效能低损耗
·随着IGBT升级换代,变频器性能不断提高,体积不断减小。 ·三菱电机在功率半导体领域的一个很大的优势就是贴近系统用户。 日本从上世纪80年代开始使用工业用的变频器,还有家庭用的变频空调,在市场上变频技术得到了很快的发展。最初变频器都用晶闸管,但是后来出现了用在变频器上的IGBT。通过使用IGBT,功率损耗大幅降低。同时,经过25年的发展,出现了各种各样的研究开发成果,目前三菱电机的IGBT芯片已经发展到第6代。可以举一个直观的例子来说明IGBT的发展水平:如果把上世纪80年代双极型器件的损耗值设定为100的话,那么第1代IGBT的损耗值为70,第5代IGBT的损耗值为30,而现在第6代的IGBT已经把损耗值降低到24
[电源管理]
30MHz至2000MHz宽带下变频器设计
在雷达、扫描接收器、电缆基础设施和仪表等传统宽带射频应用中,单个接收器链路通常不够宽,不能覆盖整个有用带宽。人们常常使用多个并联信号链路来模拟单个宽带接收器链路。这导致费用和复杂性较高、设计时间较长。因此,减少并联通路几乎是所有接收器设计的重中之重。这些宽带射频接收器非常有用,它们甚至适用于频带较窄的应用,可重用于仅因软件修改而稍有不同的产品,因此能够节省总的工程时间,降低生产成本。 LTC5510是一款1MHz至6GHz的有源混频器,可在极宽的输入带宽上提供高性能,该器件可用于上变频和下变频应用,具备灵活的电源,停机时功率极低,仅需要很低(0dBm)的LO驱动电平。 图1显示了一个可用带宽为30MHz至2GH
[测试测量]
5个例子一步步带你入门PLC
PLC和变频器都是工业控制中最常用的设备,二者可以单独使用,也可以密切配合,都能够达到自动化控制的目的,应用非常的广泛,今天就举一个具体的例子:双恒压无塔供水系统,这个系统是由变频器和PLC密切配合才能完成的,一般都在大的项目上使用。
[嵌入式]
集成了 LO 频率倍增器的宽带 2GHz 至 14GHz 混频器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 2016 年 3 月 7 日 凌力尔特公司 (Linear Technology Corporation) 推出双平衡混频器 LTC5548,该器件可作为上变频器或下变频器运行,具极宽的 2GHz 至 14GHz 频率范围。LTC5548 在 RF 和 LO 端口集成了平衡-不平衡变压器,从而分别地在每个端口于 2GHz 至 13.6GHz 和 1GHz 至 12GHz 提供 50 匹配,同时实现单端操作。此外,IF 端口能够从 DC 到 6GHz,支持在带基的宽带发送器和接收器。LTC5548 在 5.8GHz 时具很高的 24.4dBm IIP3 线性度,在 9GHz
[电源管理]
变频器输出电压怎么测
变频器输出电压测量 一般而言,对于变频器输出电压,我们关注的是基波有效值,我们常说的380伏、690伏变频器,以及变频器面板上显示的电压值,都是指基波有效值而言。 对于万用表,多数只能测量工频正弦波的有效值,部分高档万用表可以测量非工频、非正弦信号的真有效值。真有效值不同于基波有效值。以380伏变频器为例,额定输出时,用真有效值万用表测量,其电压可达450伏甚至500伏以上(与万用表带宽有关,一定范围内,带宽越宽,测量值越大,越接近真实的真有效值)。 以380伏变频器为例,额定输出时,用真有效值万用表测量,其电压可达450伏甚至500伏以上(与万用表带宽有关,一定范围内,带宽越宽,测量值越大,越接近真实的
[测试测量]
采用LabVIEW的PC机与变频器的串口通信
1 引言 本文针对摩擦学试验研究的特点,采用广泛使用的LabVIEW编程语言,开发用于东元7200MA 变频器 运行频率的控制串口通讯程序。 由于摩擦学试验机和摩擦学测试的特殊性,摩擦学试验中的变频器调速有着不同于一般工业变频控制的特点。一方面,要求变频器调速能够在较大范围内满足摩擦学测试的要求,使得试验结果具有可比性;另一方面,摩擦磨损试验过程中,对控制有一些特殊的要求,例如需要特殊的速度、运动的非周期性以及设备的快速启动和停止等。在一些疲劳试验中,甚至要求电机进行寸动或者往复运动以检测材料的性能,有的试验现场对人体的损害比较大,需要远距离进行控制和检测电机的运转情况。所以,必须利用 计算机 程序控制变频器实
[测试测量]
变频器和逆变器常用的驱动集成电路(二)
上篇文章介绍了变频器逆变器常用的外围驱动电路部分,主要介绍了M57962和EXB840,这两种驱动模块都是用的比较多且技术方案比较早期的因此存在一个问题就是芯片体积比较大不利于结构紧凑的应用,因此也有相当一部分厂家采用的是贴片式IC为核心来设计IGBT的外围驱动电路的。这其中典型的应用有A316J、A332J等驱动光耦以及concept公司的2SD315集成驱动模块。 由A316J构成的驱动模块 A316J采用的是双列16脚贴片式封装结构,由316J构成的驱动电路具有电路结构简单维修方便的特点下图2是316J的一个典型应用电路。316J的引脚功能如下: 1,2脚为驱动信号输入端 3,4脚为芯片工作电压,3脚为+5V,4脚为地
[嵌入式]