电动汽车设计环境与电源管理电路分析

发布者:心灵舞动最新更新时间:2016-10-10 来源: ofweek关键字:电动汽车  设计环境  电源管理 手机看文章 扫描二维码
随时随地手机看文章
正如亨利福特于1923年所说:“即使仅节省几磅的汽车重量……也意味着它们能开得更快,并且消耗更少的燃料。”这个永恒真理正是锂电池化学产业凭借更高比能(焦耳/千克)引领世界向下一代更具重量效益、插电式电动汽车发展的理由。

  但我们对笔记本电脑的锂离子电池爆炸案记忆犹新,当再度考虑到电动汽车电池更大的总能量时,该事件更是被进一步放大。这方面的顾虑及其它因素促进了高度智能的电池管理系统(BMS)的发展。这种电池管理系统需要与大功率电池充电系统通讯来满足诸如安全、成本、电池寿命、汽车行程(又名里程焦虑)和整夜充电等要求——为了达到更低的碳排放和更高的燃油经济性需要做出的所有痛苦让步。

  随着汽车OEM厂商对下一代电池管理和充电系统要求的确定,半导体公司正在推进预期能够满足这些要求的产品开发。本文将要讨论与插电式混合动力汽车(PHEV)中的大功率(》3kW)、脱机式电池充电器的开发相关的设计要求、架构和挑战,并展示为何要为这类应用建立数字电源架构。

  电动汽车设计环境

  电动交通工具泛指使用高压电池和电动马达进行推进的车辆。与仅用内燃机(ICE)提供动力的汽车相比,这种技术的优势在于电动马达在产生扭矩(特别是在加速过程中)时要比ICE高效得多。另外,电动汽车可以在行车时回收动能,而其它汽车只能以热量的形式损耗掉。

  混合动力汽车(HEV)与新兴的PHEV汽车不同,它们使用较低容量的电池和电动马达辅助主要ICE加速。这种混合扭矩加上再生制动能力可进一步改善燃油利用率,并减少碳排放。

  然而,减少排放还不能完全满足针对汽车零排放的最新法律要求。因此,作为新兴汽车,PHEV的动力完全来自于洁净电网能量1。

  所谓的串联电动汽车与并联HEV不同,不从两种来源混合扭矩。所有推进扭矩来自更大的电动马达,一般大于80kW。在某些情况下会增加一个性能经过优化的小型里程延伸ICE,用于解决纯电动汽车电池的里程限制问题2。ICE用作发电机给电动马达供电,并给电池充电。不管是在PHEV还是HEV中,增加高压电池和电动马达从根本上改变了汽车的电气、机械和安全系统。因此最终需要复杂和高度智能的功率电子和电池管理系统。

  电池设计挑战

  过去100年内,工程师已经将汽油推进系统改进得十分完善。现在,OEM及其供货商一改过去的方式,开始组成联盟,突破常规,集中力量优化电动推进系统。

  但电动推进的高成本表现在产品开发和组件复杂度方面,需要用复杂和容错性的汽车智能和功率电子系统连续管理数十千瓦的功率。

  考虑在传统汽油动力汽车中测量油量的简单任务。根据具体的汽车,油量表可能只是由连接到一个发送部件的加热线圈驱动的双金属条。而在电动汽车中,‘油箱’是由串联/并联着的许多电池单元(可能100节或以上)组成的高压电池。对电荷状态(SOC)的精确判断要求对每节电池进行精确的电压测量(在几毫伏内)。

  这是电池管理系统的工作。BMS是一个高精度的系统,用于向中央处理器报告有关电池单元的电压、电流和温度等详细信息,然后由中央处理器负责计算电池的SOC(也就是汽车的油量)。不能精确地测量电池不仅会误报电池SOC,还会缩短电池服务寿命,或产生不安全和潜在性的灾情。

  为了避免出现这种情况,业界开发出了满足ISO26262之类新兴标准的IC,它们通过硬件内建测试功能,以及为电池单元的过压/欠压监视等安全关键功能提供的N+1冗余保护确保系统可靠地工作。如果电池组中的一节电池被迫进入深度放电状态,或被过度充电,这节电池可能永久性损坏,并可能出现热失控——自我破坏状态。因此,除了主要的电池监视系统外还需要二级保护。

  更先进的BMS将同步电压和电流测量,并作为连续测量电池阻抗的一种方式。阻抗是电池健康状态(SOH)的一个重要指示。

  

  图1:针对多单元数量应用的电池管理系统。

  图1显示了足以用来测量电池SOC和SOH的典型电池单元配置和BMS。请注意,串联电池组中的任何一节电池单元都会限制整个电池组容量。换句话说,如果某节电池单元先于其它电池达到了最大或最小电压,充电或放电周期必须被中断。(图中用绿色标示的)单元平衡电路用于确保所有单元被均匀一致地充电和放电。
 

  电池充电器的基本原理

  电动汽车充电器是根据输出功率/输入电压分类的。一类充电器通常整合在电路板上,输入的是95V至265V的交流电压,充电能力在1.5kW和3.3kW之间。专用的二类和三类充电器工作于240V/480V配线系统,能够以快得多的速率完成充电,但限于汽车电池和连接器约束范围内。例如,SAE J1772是目前北美地区唯一获得批准的电动汽车连接器标准,功率限制为16.8kW以下。

  与用于可携式电子设备的电池不同,汽车级电池可以适应大得多的充电电流,不会影响电池寿命或接近热失控。充电器的C额定值被定义为流入电池的电流,正比于用安培/小时为单位测量的电池容量。例如,1C充电器将以1A的电流为1Ah电池充电。

  虽然传统的锂离子电池可能限于1C,但一些汽车电池可以用远高于这个限值的电流充电,从而缩短再次充电时间。事实上,工作在480V/三相电压的大功率三类充电器(例如Aker Wade Power Technologies3和其他公司开发的产品)给电动汽车电池充电的时间与加满一箱油的时间相近。

  请注意,电动汽车的电池容量一般是用千瓦/时表示,通过将千瓦/时额定值除以标称电池平坦电压可以将它松散地关联到电池的安培/时额定值。作为参考点,Nissan Leaf公司整合的一款3.3kW充电器需要用8个小时时间将一个24kW的电池从10%充电到满充状态。

  另外需要注意的是,电动汽车电池的放电深度影响电池单元寿命,因此这种电池在充电周期开始时通常需要保留至少10%的电池容量。

  充电器的架构设计

  板载充电器必须符合严格的电磁兼容性、功率因子和UL/IEC安全标准方面的工业和政府法规要求。与所有其它的锂化学工业一样,电动汽车推进电池充电器采用?宁y、?睎?(CC/CV)充电算法,电池先被可程序设计的电流源充电,直到它达到电压设置点,然后转入稳压阶段,同时监视电池电流作为充电周期完成的指示。

  充电电流(功率)由BMS、混合控制模块(HCM)和电动汽车服务设备协商确定,具体取决于使用的输入电压、温度和电池SOC/SOH以及受HCM监视的其它系统考虑因素。这种控制算法的安全性和容错性一点也不能打折扣。

  合适的电源架构涉及交错式功率因子校正(PFC)和随后的相移全桥电路,如图2所示。控制回馈参数由微控制器数字化。这个微控制器能够以数字方式关闭多个控制环路,并精确地调变高压MOSFET开关。

  

  图2:连接交错式PFC和相移桥的数字控制接口。

  集中和高度智慧的控制机制可以满足模拟技术不容易解决的许多问题。

  更先进的微控制器整合有协处理器(控制律加速器)和多个高分辨率脉宽调变器(PWM),前者用于加速控制环路传输函数的运算,后者能够控制功率开关在150ps内。这种架构能够动态适应线路和负载的变化,记录系统操作参数数据,并实现前瞻性的无差错算法,同时通过地气隔离的控制局域网络智能地连接所有其它汽车子系统。

  最近在数字电源方面的发展使得这种方法更加可行,更具成本效益、可扩展性,并且更适合电动汽车中的大功率多相位应用。
 

  有经验的软件设计师可以免费使用针对数字补偿和实际上每种电源拓扑的大型且可扩展模块化软件库进行整合;另外还能获得与数字和模拟电源解决方案作对比的测试报告。例如,考虑图2所示的两相交错式PFC功能。PFC升压开关受实现多模式PFC的PWM1控制,可以产生电池充电器的兼容电压。

  从图3可以明显看出这种拓扑的适应性,其中的数字补偿和相位管理模块在软件控制下是可变的。采用数字技术还能使系统不易受噪声和温度的影响,同时智能地同步电源级电路,使干扰最小,并优化滤波器设计。

  

  图3:大功率PFC方法的软件模块化程序设计。

  图3为升压PFC的完整代码模块。相似代码构造可以用零电压开关实现相移桥,从而使转换器开关损耗达到最小,同时提高效率。

关键字:电动汽车  设计环境  电源管理 引用地址:电动汽车设计环境与电源管理电路分析

上一篇:汽车开放系统架构完善车载网络和ECU设计
下一篇:超级电容在电动车驱动和制动系统中有哪些应用?

推荐阅读最新更新时间:2024-05-03 00:43

高温环境下的家用绿色电源设计方案
烹饪过程中不仅会产生热量,同时也会释放大量的水蒸气和冷凝水蒸汽。厨具电子控制装置中的电源必须在高达105℃的环境温度及高湿度条件下发挥稳定性能。除了要满足国际性EMI及安全标准之外,电源还必须有助于促进日益严格的节能目标的实现。 能源消耗的结果远不止于电量的使用。其他必须考虑的因素包括材料和资源的使用、废弃物的产生以及环境污染物的排放。据估计,与产品相关的所有环境影响的80%以上都由产品的设计阶段决定(1)。正是在此背景下,欧盟委员发布了生态设计指令,以确保在欧洲销售的所有用能产品(EuP)在最初设计时都能将环境影响降至最小。值得一提的是,生态设计指令致力于降低产品整个生命周期内的能耗水平。对于家用电器中的辅助电源,可适用Eu
[电源管理]
高温<font color='red'>环境</font>下的家用绿色电源<font color='red'>设计</font>方案
罗姆与汽车零部件制造商Vitesco合作开发SiC电动汽车驱动器
罗姆已与Vitesco Technologies签订了开发碳化硅电动汽车驱动器的协议。 Vitesco副总裁Thomas Stierle说:“能源效率在电动汽车中至关重要,由于电池是车辆中唯一的能源,因此必须把因功率转换引起的任何损失降至最低。因此,我们正在模块化电力电子系统中开发SiC组件,为了从电力电子设备和电动机中获得最大效率,我们将使用合作伙伴提供的SiC功率器件,所以我们选择罗姆。” Vitesco已经在开发和测试800V SiC逆变器,旨在同时优化逆变器开关策略和电动机,通过更高的频率和更陡的开关斜率提供更高的开关效率,并减少电动机的谐波损耗。此外,公司还正在研究800V SiC车载电池充电器。 Vitesco
[汽车电子]
电动汽车热管理是什么?热管理技术的发展方向
“热管理”对于大部份传统车消费者来说,即陌生又无感。但到了纯电汽车时代,由于电池成本很贵,电池的能耗成了车企和用户关注的焦点。热管理的重要性就被凸显。 整车热管理系统,不管是给座舱调节温度,还是给电池保温,都会对能耗、续航产生了直接的影响,在媒体机构冬季测试中,热管理的好坏,通过续航的达成率和能耗的增加的比例可以直观的显现出来。 什么是热管理系统 我们首先来说明什么是热管理系统,以及什么是好的热管理系统。 从用户的角度来说,电动汽车时代热管理系统主要的作用,体现在一内一外。内部是让车内温度冬暖夏凉,比如给座椅和方向盘加热,或者提前打开空调等等——在快速调节座舱温度的过程中,用多少时间达到指定的温度、需要花费多少能量,如何
[嵌入式]
<font color='red'>电动汽车</font>热管理是什么?热管理技术的发展方向
央视:七成充电桩存风险,可致触电死亡
全国各地限牌后,电动成了广大新老司机朋友的最佳选择,其实电动汽车本身的性能还好,市内跑跑感觉不出和汽油车的区别,但到了要充电的时候,就让人头大了。除了充电桩不好找、充电时间太久以外,不合格的充电桩还有可能要了你的命…… 近日,广东产品质量监督检验研究院首次公布了电动汽车充电桩产品风险监测结果,结果显示70%的样品存在安全隐患。 这次风险监测共采集9家生产企业的10批次电动汽车充电桩产品,其中7批次不符合国标要求。风险监测发现,样品有四个项目不符合国标要求,容易起火、导致使用者触电。记者还注意到,其中有1批次样品3个检测项目项均不符合国标,安全风险较大。 广东产品质量监督检验研究院结合伤害的严重程度和发生的可能性进行风险分
[汽车电子]
央视:七成充电桩存风险,可致触电死亡
基于最新电源管理技术和设计理念介绍
电子书无疑是目前便携电子市场最热门的应用,那么电子书的最大竞争力和卖点是什么呢?电子书的 电源 设计应该注意什么?电子书的屏幕如何实现与众不同呢?怎样实现电子书的超长待机时间呢?TI半导体事业部业务拓展工程师王轶就这些大家所关注的问题一一进行了分析探讨。 王轶指出,E-book与其它电子产品的不同之处在于具有一个特殊的屏,在电子书断电之后仍可显示图像,电子书最重要的就是屏。目前电子书的屏幕技术比较单一,要实现与其他厂商的差异化就必须保证电子书有很长的寿命,不会因时间久而老化。同时,产品的优劣还可以通过液晶屏翻页显示的快慢来检验。在谈到,E-book超长待机的设计考量时,王轶指出,TI E-reader最大的卖点是超长待机时间,最
[电源管理]
基于最新<font color='red'>电源管理</font>技术和<font color='red'>设计</font>理念介绍
汽车电子连环话 | 电池寿命有偏差?系统测试是关键
昨天写完《 电池 寿命对 电动汽车 的影响》之后,在群里做了一些交流,把几个问题突出的来解释下。   第一部分 对电池包的测试 INL的测试小哥很牛,按照这个图的示意,其实他把每个电池包连接器拆解下来,通过给继电器信号让电池包导通,然后通过1/3C进行Pack的静态容量测试,这是根据下面这个包的推算结果。   1)不拆包直接进行连接测试 下面这两个图其实是类似的,如果BDU的继电器是直接用外部信号驱动的,则可以直接通过外部电源信号供给,断开主连接器接入电池包测试柜,然后使用时序控制来接管继电器。     2)拆包进行测试 如下面这个电池包这样(由电池管理系统直接驱动继电器的)就只能
[嵌入式]
浙江省发布电动汽车充换电设施电价新政
  12月12日,浙江省发展和改革委员会、浙江省市场监督管理局正式对外发布《关于进一步优化规范电动汽车充换电设施用电价格有关事项的通知》(以下简称《通知》)。该政策优化规范了充换电设施用电价格,并规范了充换电服务收费行为。   以下为原文 浙江省发展改革委 浙江省市场监管局关于进一步优化规范电动汽车充换电设施用电价格有关事项的通知 各市、县(市、区)发展改革委(局)、市场监管局,国网浙江省电力有限公司:   为深入实施营商环境优化提升“一号改革工程”,进一步为充换电设施经营企业和用户降本减负,助力充换电基础设施加快建设,满足人民群众出行充换电需求,根据《国家发展改革委国家能源局关于加快推进充电
[新能源]
下一代手机中的电源管理分割方案(附图解)
  第三代(3G)手机可提供具有更多功能的各种特性。当消费者享用这些通信设备最新及更好功能的时候,他们还继续要求单个电池的工作时间更长、手机的外形尺寸更小。尽管IC集成可帮助解决尺寸问题,但同时也会增加设计复杂度并限制设计灵活性。当今的手机设计工程师必须考虑多种因素来有效地优化电池使用,以延长电池工作时间。因此,必须结合使用高度集成化的电源管理单元和高性能分立器件来进行电池管理、功率转换以及系统管理。 图1:3G手机的系统组成框图。 两难选择:功能与电池功率   当设计一款高级无线设备时,设计工程师将面临一个两难选择。一方面,他们需要将许多功能集成到一个通常由电池和显示屏的尺寸、复杂的用户接口和设计工程学所决定的特
[手机便携]
下一代手机中的<font color='red'>电源管理</font>分割方案(附图解)
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved