人工智能时代芯片领域竞争汹涌谁与争锋

发布者:theta18最新更新时间:2016-12-28 来源: 中国安防网关键字:人工智能 手机看文章 扫描二维码
随时随地手机看文章

        IBM 表示世界上90%的数据产生于过去的两年,其中的大部分为非结构化数据。随着物联网的应用催生出更多不同来源的数据,未来几年这一趋势将会加速。因此,基于传统规则的数据分析方法的有效性已经有所下降;为了更好利用爆发式增长的数据,新的方法将采用(如机器学习)。各大芯片及人工智能公司纷纷加入这场竞赛,努力在竞争对手投入新市场前将各自的非结构化数据集变现。


    1.jpg


  深度学习的供应链

  GPU 是实现深度学习的关键:深度学习的两个步骤:训练和推断。训练网络目的是有效的设臵网络权重(Training);使用训练前的网络用来推断输入内容(Inference)。训练部分的成本更高,进度缓慢且昂贵,而推断部分则缺乏适应新未知内容输入的灵活性。

  深度学习的“训练”和“推断”

  由于深度学习的计算性质,深度学习对并行处理的要求较高(尤其是在训练阶段),因此为CPU 添加加速器将能够极大地改善性能。目前使用的主要加速器是GPU 和FPGA,二者均在并行处理方面有良好的表现,因此较CPU 本身的处理能力而言具备显著的性能优势。

  GPU跟着深度学习一起火

  今年的英伟达绝对是芯片领域的明星,虽然体量及总体营收尚不及英特尔/高通等老炮,但是GPU时代开启之后,其潜力倍受认可。在PC时代,Intel占据了GPU市场的龙头地位,随着移动互联网时代的到来,全球GPU市场经历了翻天覆地的变化,ARM主要是随着移动端的快速发展逐渐崛起。而独立GPU企业NVIDIA则在人工智能、汽车电子、视音频大数据领域、VR等需求的驱动下,市值不断创新高。

  主流芯片的市场分布

  GPU称为图形处理器,或视觉处理器。顾名思义,GPU最主要的应用场景就是处理图像显示计算。计算机图像显示流程见下图,在这个过程中CPU决定了显示内容,而GPU则决定了显示的质量如何。像GPU这类辅助CPU完成特定功能芯片统称“协处理器”,“协”字表明了GPU在计算机体系中处于从属地位。

  计算机现实图像的基本过程

  GPU具有高并行结构(highly parallel structure),因此在处理图形数据和复杂算法方面拥有比CPU更高的效率。CPU大部分面积为控制器和寄存器,与之相比GPU拥有更多的ALU(Arithmetic Logic Unit,逻辑运算单元:用于数据处理),而非数据高速缓存和流控制。这样的结构适合对密集型数据进行并行处理,所以我们看到在高度并行化且数据规模巨大的情况下,GPU获得很高的浮点运算性能。

  说明:GPU的工作特点计算量大,但没什么技术含量,而且要重复很多很多次。就像你有个工作需要算上亿次一百以内加减乘除一样,简单的办法就是雇上几十个小学生一起算,一人算一部分,反正这些计算也没什么技术含量,纯粹体力活而已。GPU就是这样,用很多简单的计算单元去完成大量的计算任务,纯粹的人海战术。这种策略基于一个前提,就是小学生A和小学生B的工作没有什么依赖性,是互相独立的。很多涉及到大量计算的问题基本都有这种特性,比如说破解密码,挖矿和很多图形学的计算。这些计算可以分解为多个相同的简单小任务,每个任务就可以分给一个小学生去做。而CPU就像老教授,积分微分都会算,就是工资高,一个老教授资顶几十个小学生,但是老教授还具有协调、沟通及管理等能力。

  GPU配合CPU协同工作

  人工智能技术发展早期,GPU作为一种现成的并行计算加速芯片被使用在多个项目之中,如汽车的自动驾驶,图像识别算法等,但GPU未必为人工智能加速硬件的终极答案。GPU限于最初设计目标,在两个方向上均不能完美匹配人工智能主流算法。未来随着人工智能技术大规模商用化,从产业链过去发展的历史类比,专用人工智能加速协处理器将对GPU这类过渡方案构成挑战。GPU,由于其最初设计匹配的计算模型与神经网络计算模型存在不同,其并行计算核心之间的通信架构-NOC(片上网络)应用在神经网络运算中均存在缺点。

  GPU不是人工智能的终极芯片

  看似GPU已经在人工智能的加速计算中占主导地位,那么,未来人工智能的硬件加速也一定由GPU承担吗?事实并非如此,业内已经存在各种具备竞争力的替代解决方案。谷歌在2016年5月末召开的I/O大会披露了TPU(Tensor Processing Unit)专用处理器项目。资料显示TPU实际已使用在谷歌诸多商业与科研项目之中超过了一年时间。击败李世石的围棋世纪人机大战所使用的服务器集群使用TPU加速围棋中DCNN(Deep Convolutional Neural Network)的计算。谷歌的RankBrain中使用TPU提升搜索结果和街景服务的相关度。

  GPU与安防及视频智能

  随着互联网技术的不断进步,GPU目前在人工智能(图像语音识别、无人驾驶等)、视频处理、VR/AR、生命化学、金融证券数据等领域显示出了优势,短期内具有广阔的应用前景。

  GPU的发展空间

  深度学习技术的发展使人工智能产业的冰山正在迅速融化成一股势不可挡的洪流,冲击着安防行业的产业变革。安防行业众多一线厂商携手世界顶级人工智能芯片厂商发力智能硬件产品升级,并将CV领域的最尖端的图形处理器应用于新型硬件产品的研发。目前包括海康、大华、宇视、网力、科达、旷视、格灵、文安等,均已经或即将基于Nvidia/Movidius的GPU产品,结合到安防前端产品及后端系统中,深度学习/人工智能正逐步落地安防应用。
文章链接:中国安防展览网 http://www.afzhan.com/news/detail/51672.html

关键字:人工智能 引用地址:人工智能时代芯片领域竞争汹涌谁与争锋

上一篇:安森美半导体计算应用
下一篇:2016年广州致远电子股份有限公司大事件回顾

推荐阅读最新更新时间:2024-05-03 00:56

意法半导体新品发布:推出耐高温、支持AI的汽车惯性测量单元
意法半导体(STMicroelectronics,ST)于11月30日宣布,推出一款名为ASM330LHHXG1的新型汽车用惯性测量单元(IMU)。该产品采用了传感器内AI和增强型低功耗操作,能在125°C的温度范围内稳定工作,即使在恶劣环境下也能保持可靠性。 这款新型汽车IMU包含一个3轴加速计和3轴陀螺仪,两个传感器运行时的电流消耗低于800μA,这有助于降低系统的功耗预算,使其可以在始终感知的应用中使用。传感器内部的AI通过使用内置的机器学习核心(MLC)和有限状态机(FSM),能够减轻主机处理器的负担,实现低延迟、节能的事件检测和分类。 ASM330LHHXG1智能传感器的另一个优点是其扩展的温度范围。这使得它可以
[汽车电子]
意法半导体新品发布:推出耐高温、支持<font color='red'>AI</font>的汽车惯性测量单元
人工智能与大数据的关系和影响
  和大数据是当今最火热的两个,二者之间有着密不可分的关系。   人工是指计算机人类智能的能力,包括理解语言、学习、推理、计算、感知和规划等。   而人工智能是一种基于计算机科学的技术,旨在模拟人类的智能行为和思维方式。   而大数据则是指规模巨大、难以处理的数据集合。   大数据是指由各种数据来源产生的大量数据   这些数据来源包括、移动设备、社交媒体、搜索引擎、交易系统等。这些数据的规模非常庞大,通常需要用到先进的数据处理技术和才能进行有效的分析和利用。   人工智能和大数据是密不可分的。大数据提供了足够的数据让,从而使人工智能更加聪明、精确和准确。同时,人工智能也能够为大数
[机器人]
马文·明斯基,将一生奉献给了人工智能事业
“智能问题看起来深不见底,我想这是值得我奉献一生的领域。” 在70年的人工智能浪潮中,马文·明斯基(Marvin Minsky)是一个如雷贯耳的名字,与机器学习、神经网络、虚拟现实、框架理论等热门名词紧紧联系在一起。他是定义和发展“人工智能”的先驱者之一,也是人工智能领域的首位图灵奖获得者,被尊称为“人工智能之父”。他的学术贡献璀璨夺目,横跨人工智能、机器人、图形与显微镜技术、数学、认知心理学等多个学科领域。 探究智能的狂热 1927年,Marvin Minsky出生于美国纽约的一个犹太家庭。他从小在私立学校接受教育,高中毕业后遵循犹太传统应征入伍,在二战末期经历了两年海军生涯。退伍后,他在哈佛大学主修数学,同时选
[嵌入式]
马文·明斯基,将一生奉献给了<font color='red'>人工智能</font>事业
LG电子将转向 重点发力人工智能与机器人业务
    LG电子首席执行官乔晟金(Jo Seong-jin)表示,LG作为韩国消费电子行业的巨头,今年之内将改变方向,加强人工智能和机器人业务的发展,这也是未来公司业绩增长策略的一部分。 LG 参加了2018 年德国柏林国际消费电子展(IFA),乔晟金8月31日在电子展上表示,公司计划聘请大批工程师,给发展人工智能和机器人业务提供更好的技术基础。 乔晟金反复声明,机器人和人工智能是未来的趋势,公司要突破目前的领域,引领商界。他说:“世界正要迎来人工智能的时代,顺应潮流十分重要。” 乔晟金谈到机器人业务方面,公司会把重点放在家用机器人、公用机器和工业机器上,也要在研发可穿戴器械设备领域领先。公司还在电子展上推出了CLOi Sui
[手机便携]
云端、物联网、AI等技术助力,智能家居市场望明显增长
上周台湾建筑大厂远雄建设开记者会,介绍该公司旗下的智能二代宅,透过云端、 物联网 、 AI 等技术的整合,擘划出未来居家生活的新面貌,从远雄的相关动作与国外近年来的家电连网进展,可以看出智能住宅这个老议题已再次加温, 尤其是在如Amazon这类型语音智能助理的带动下,近期可望有明显成长。   说智能住宅是老议题一点都不为过,早在10几年前,包括Intel等科技大厂就曾经推动过数字家庭,其诉求是将家中的PC、音响、电视等影音设备串流,不过当时只有科技产业一头热,大型家电业者多持观望态度,后来不了了之, 在数字家庭息声不久后,换工业计算机业者喊出智能住宅,与之前数字家庭不同,智能住宅主要以控制技术为主,应用的设备是家中灯光、窗帘
[嵌入式]
人工智能和机器人结合 打造10000美元的性爱机器人
  美国性爱娃娃制造商RealDoll正将人工智能()和机器人结合起来,开发出一款可以定制性格,和人进行情感交流的性爱机器人。   新产品有好几个部分,都将在今明两年推出。首先是 AI ,预计将于 4 月 15 日推出;接着是“机器人头”系统,将于年底发布;而虚拟现实平台则要等到明年。   价格自然也不菲,光是这个机器人头售价就高达 10000 美元。而除了智能的部分,身体也非常逼真。   每个仿真硅胶“RealDoll”性爱机器人都拥有灵活的骨骼,从开始生产到最终成品出炉大约需要耗费 80 小时,不仅如此,这款性爱机器人还可以定制生殖器和更换面孔。   在加州圣马科斯厄比斯创意( Abyss CreaTIon)
[机器人]
NVIDIA Omniverse让AI训练变得更加简单易用
Rendered. 将 NVIDIA Omniverse Replat 集成到其合成数据生成平台,使 AI 训练变得更加简单易用。 Rendered.ai 正在通过其合成数据生成(G)平台即服务(PaaS)为、数据科学家等人员简化 AI 训练。 训练 AI 模型需要大量高质量、多样化且无偏向的数据集。在对 AI 的需求日益增加的情况下,获得这些数据的难度很大且成本高昂。 Rendered.ai 平台即服务的解决方法是,生成符合现实的合成数据(从 3D 中创建的数据)来训练计算机视觉模型。 Rendered.ai 创始人兼首席执行官 Nathan Kundtz 表示:“真实世
[机器人]
英特尔自研AI工具,将耗时数周的芯片设计周期缩短至几个小时
增强型人工智能为Meteor Lake处理器的设计提速,并将在未来的客户端处理器家族中得到应用。 Olena Zhu博士,英特尔客户端计算事业部高级首席工程师及人工智能解决方案架构师 (来源:英特尔公司) 数十年来,我们需要将科学与艺术相结合,以决定将热敏传感器置于英特尔客户端处理器的何处。 电路设计师会参考历史数据,来确定将热感应器放置在现代笔记本电脑的中央处理器(CPU)的哪个位置。他们还会依靠经验判断热点容易出现的区域。这个复杂的流程可能需要耗费6周时间进行测试,包括模拟工作负载,优化传感器位置,然后重新开始整个步骤。 如今,得益于英特尔工程师内部研发的一种新的增强智能工具,系统级芯片的设计师无需再等6周
[半导体设计/制造]
英特尔自研<font color='red'>AI</font>工具,将耗时数周的芯片设计周期缩短至几个小时
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved