研究团队实现对重金属离子高灵敏的电化学检测

发布者:BlissfulSpirit最新更新时间:2018-03-23 来源: 电子产品世界关键字:电化学 手机看文章 扫描二维码
随时随地手机看文章

  记者从中科院合肥物质科学研究院获悉,该院智能所黄行九研究团队,利用表面具有大量氧空位的TiO2-x纳米片,实现对重金属离子高灵敏的电化学检测,对一直困扰人们的重金属离子检测干扰机制做了深入的探索,并提出了“电子诱导干扰机制”这一原理。相关成果日前已发表在美国化学学会的《分析化学》(Analytical Chemistry)杂志上。下面就随嵌入式小编一起来了解一下相关内容吧。

  纳米材料已经被广泛的应用于电分析化学中。然而,对于纳米材料活性位点与电化学传感机制的构效关系,仍然缺乏一个原子层面的解释。由于电化学分析原理的内在原因,重金属离子之间的相互干扰在电化学检测领域中也是研究人员不可回避的一个问题。

  研究人员已经发现了二氧化钛TiO2表面掺杂氧空穴调控晶面的表面电子结构,激发了惰性半导体纳米材料对重金属离子的检测活性。在此基础上,研究人员通过调控反应物中氟化氢的比例,制备了具有大量表面氧空位的TiO2-x纳米片。通过高分辨透射电子显微镜(HRTEM),X射线衍射(XRD),拉曼,电子顺磁共振(ESR),X射线光电子能谱(XPS)等多种技术揭示了纳米材料活性位点与电化学传感性能的构效关系。实验证实,在离子共存体系中,研究人员利用同步辐射技术(EXAFS),从原子层面上系统的阐述了二价镉离子Cd(II)对二价铜离子Cu(II)的干扰原因。研究表明,Cd(II)能够促进电子从TiO2-x纳米片表面向Cu(II)的转移,同时,Cu(II)的存在增长了Cu-O的键长,导致解吸能降低。

  这些发现为从原子层面上发展高灵敏纳米材料和研究电化学检测干扰机制夯实了坚定的道路。

    以上是关于嵌入式中-研究团队实现对重金属离子高灵敏的电化学检测的相关介绍,如果想要了解更多相关信息,请多多关注eeworld,eeworld电子工程将给大家提供更全、更详细、更新的资讯信息。

关键字:电化学 引用地址:研究团队实现对重金属离子高灵敏的电化学检测

上一篇:4K投影机市场增长迅速
下一篇:通过笑容识别性别 AI拥有生物识别技术

推荐阅读最新更新时间:2024-05-03 02:38

电化学整流电源的设计
摘要: 介绍电化学整流电源及其设计,结合国内外发展的情况,对系统设计的目前状况和发展趋势进行了综述。 关键词: 电化学整流电源 设计方法 电化学整流电源主要用做铝镁电解、食盐电解、其它金属电解、水电解等设备的直流电源,其特点是提供强大的直流电流,而且必须连续供电;同时由于耗电量大,要求电源效率较高。近年来,随着有色、冶金、化工工业以及功率半导体器件、控制方式和计算机应用的发展,电化学整流电源在设计技术方面也得到了很大的提高,建模、仿真、分析设计在逐步贯穿整个设计过程。 现代电化学整流电源的设计包括主电路设计、控制电路设计、计算机辅助设计、辅助系统设计、计算机监控设计。 1 主电路结构 电化学整流电
[电源管理]
基于AT89C52的电化学工作站设计
随着工业的发展,金属的使用越来越广泛,但随之而来的金属腐蚀问题也不容忽视。因金属腐蚀而导致的一系列事故,如天然气管道泄露、雷击烧毁设备等,给工业生产和日常生活带来巨大的损失。在设备的腐蚀研究中,金属设备的腐蚀大多数是以电化学为主进行的,即Fe→Fe2++2e,研究Fe的电子得失速度就可以研究金属的腐蚀速度。在过去的研究中,常采用的电化学研究方法是利用恒电位仪来检测电极的电位和电流值,画出电极的极化曲线,然后利用塔菲尔公式求出腐蚀速度。恒电位测试中,由于采用手动操作,随着腐蚀金属表面状况发生变化,电流数值漂移较大、读数误差大、测量速度慢,严重影响了测试效果。随着电子产品的发展,人们将信号发生器、恒电位仪、对数转换仪、函数记录仪等组
[单片机]
基于AT89C52的<font color='red'>电化学</font>工作站设计
基于电化学阻抗谱测量方法精准监测锂电池状态
虽说汽车电动化已成大势,但正值冬季,不少想买电动汽车的朋友总担心在电动汽车的续航不够,甚至在严寒的天气里在车内开空调也变成一件奢侈的事情。事实上,低温一直以来都是电池的大敌,电动汽车动力电池也一样害怕低温,这是由电动汽车动力电池材料特性决定的。绝大部分电动汽车动力电池材料由正极的多元素锂材料和负极的石墨材料构成,锂离子在电解液中由电势差和电解液浓度差驱动穿过隔膜形成电流。但是锂离子在低温下活性降低,可以穿过隔膜的锂离子变少了,表现为低温下动力电池的内阻增加,可用电量减少。 锂离子电池工作原理 采用现代化测试手段研究锂离子电池性能是降低电池成本、提高续航里程的重要实现形式。 电化学阻抗谱(EIS)广泛应用于锂离子电池正负极
[测试测量]
基于<font color='red'>电化学</font>阻抗谱测量方法精准监测锂电池状态
金属所金刚石薄膜材料电化学传感研究获进展
电化学生物 传感器 是一种将与特定生物识别单元反应而产生的化学信号转换为电学信号的技术,具有高灵敏度、快响应速度、低成本、小型便携等优点,在临床医学、环境检测和检验检疫等方面具有重要作用。高催化活性的金属氧化物识别单元是电化学生物传感技术的重要发展方向之一。然而,金属氧化物识别单元电导率低,严重阻碍了反应过程中的电子转移过程,传感性能不佳。因此,从设计高效电化学生物传感电极结构角度出发,构建高导电性的纳米薄膜结构转换单元来负载高催化活性识别单元,成为该领域研究的重点和难点。 据麦姆斯咨询报道,中国科学院金属研究所沈阳材料科学国家研究中心联合研究部薄膜材料与界面课题组研究员姜辛、副研究员黄楠指导博士研究生翟朝峰,利用CVD、PV
[传感器]
金属所金刚石薄膜材料<font color='red'>电化学</font>传感研究获进展
锂离子电池组新选择:电化学均衡降低一致性差难题
长期以来锂离子电池单体一致性差是困扰着锂离子电池组设计难题,这里我们所说的一致性不仅仅是指传统意义上的容量、电压等参数,还包括了单体电池的容量衰降速度、内阻衰降速度和电池组的温度分布等因素。 理想情况下,同一批次的锂离子电池应该具有相同的电化学性能,但是实际上由于制造过程中的误差,会使锂离子单体电池之间存在不一致性。电池组往往由数百只,甚至是数千只单体电池通过串并联而成,因此电池组的容量受到单体电池的不一致性影响很大(对电池组性能影响最大的不一致性因素包括库伦效率的不一致、自放电率的不一致、内阻增加速度的不一致等),研究显示即便是单体电池循环寿命达到1000次以上,组成电池组后,电池组的寿命可能不足200次【1】。   因此对于
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved