针对电机的预测性维护

发布者:SerendipitySoul最新更新时间:2022-08-04 来源: elecfans关键字:电机  预测性维护 手机看文章 扫描二维码
随时随地手机看文章

工业4.0的到来,正在改变制造业的游戏规则。基于大数据的洞察,将使得整个生产链变得更加透明、灵活而富有弹性,在满足定制化生产的同时仍能够实现盈利,而这一切在传统制造业的模式下是无法想象的。而且,由此引发的变革是全方位的,其影响力渗透到了生产制造环节的方方面面,也包括生产设备的维护。


制造业中传统的设备维护通常包括纠正性维护和预防性维护两种方式,前者是指在设备发生故障之后进行被动地干预,后者一般则是按照预定好的周期或条件进行主动的维护。这两种方式显然都不是设备维护的最优解——前者往往要承担计划外停机的巨大损失(计划外停机的成本会占到总制造成本的近四分之一),而后者则不可避免地会在设备运转良好地情况下实施不必要的干预,进而产生较大的成本。如果有一种建立在大数据分析和洞察基础上的方法,可以实时地了解设备的实时工作状态,及时发现故障隐患,有的放矢地进行“恰到好处”的维护,这当然是更理想的解决方案。这种针对机器设备健康状况的分析被称为基于状态的监控(CbM),而基于CbM的维护方法就是“预测性维护”。


显而易见,在预测性维护的框架内,只有在机器设备出现某些早期预警症状时,才需要操作者进行干预。与传统的维护方式相比,其在减少设备停机、降低维护成本、延长设备寿命、提高产能等方面带来的效益是巨大的。

bea8e992-12c0-11ed-ba43-dac502259ad0.png

图1:预测性维护与传统维护方式的成本分析

(图源:ADI)

 

针对电机的预测性维护

由于电机等具有旋转机构的机器设备是制造业中的主力,因此针对电机的CbM或者预测性维护自然也就成了一个重点课题。这也是当今不少头部技术供应商(如Analog Devices,ADI)追逐的热点。在判断电机的工作状态是否“健康”时,需要很多数据的支持,比如压力、振动、噪声、温度等等,其中在可测量的物理量中,振动是一个尤为关键的参数,这是因为很多故障早期的症状——如滚珠轴承故障、轴偏差、不平衡、过度松动等——都会表现为异常的振动,并且在测量频谱时会呈现出各自不同的特征,由此就可以基于振动数据做出“诊断”,决定是否需要进行维护,以及进行哪种类型的维护。


比如在滚珠轴承发生故障时,当滚珠碰触到轴承的开裂处,或者内环或外环的缺陷位置,就会发生撞击,引起振动,甚至导致旋转轴轻微移位,这种撞击有时会产生可以听见的声音(即冲击波),其在频谱中通常表现为大于5kHz的低能量谱分量。而随着问题恶化,低能量谱分量会不断增加,当我们通过加速度传感器捕捉到这些振动信号之后,就可以在尽可能短的时间内做出反应。

beed8714-12c0-11ed-ba43-dac502259ad0.png

图2:不同电机的故障类型对应着不同的振动频谱特征(图源:ADI)

因此不难得出结论,只要我们围绕着电机异常振动,建立起一个从状态感知、数据采集,到数据传输、分析处理的系统,就可以构建起一套完整的CbM和预测性维护解决方案,并让其承担起电机健康问题“吹哨人”的角色,将故障消除在萌芽状态。

bf1ca2d8-12c0-11ed-ba43-dac502259ad0.png

图3:电机CbM和预测性维护解决方案架构

(图源:ADI)

 

选择合适的加速度计

从图3中我们可以看到,一个完整电机CbM和预测性维护方案的设计,需要在多个技术环节进行技术决策,而其中作为整个方案的“起点”,就是要选择能够准确捕捉到振动信号的加速度传感器。这种测量振动的加速度传感器,需要装配在被监测对象的附近,而且带宽、可靠性、尺寸、功耗、成本等都是在选型时需要综合考量的要素。以往CbM中振动测量比较常用的是压电加速度计,因为这类传感器具有较宽的带宽(典型范围为3Hz至30kHz,甚至可以高达数百kHz),这就意味着其可以“观察”到更宽频谱范围内异常振动的信号。同时,压电加速度计具有良好的线性度、SNR,以及高温工作性能,这都是工业应用中十分看重的特性。不过,压电加速度计在DC范围下的性能欠佳,因此对于风力涡轮机这种低转速的低频应用不太适合,而且其成本也偏高,会影响应用范围的进一步拓展。相较而言,MEMS电容式加速度计近年来在电机CbM和预测性维护中则表现出更强的发展势头。MEMS电容式加速度计具有DC响应特性,以及很强的抗冲击能力,而且其尺寸更小,重量更轻,更适合批量生产,因而成本也更具优势。


更重要的是,随着技术的进步,以往“带宽较低”这一困扰MEMS电容式加速度计的问题,也得到了极大的改善。可以想见,MEMS电容式加速度计的发展正在拉低CbM和预测性维护的“门槛”,使得这一技术能够渗透到电机应用的更多场景。

bf5d85c8-12c0-11ed-ba43-dac502259ad0.png

图4:两种用于电机振动测量的加速度传感器比较

(图源:ADI)

ADI的ADXL100x系列就是MEMS电容式加速度计中综合表现非常抢眼的产品。这个系列的单轴加速度计,测量带宽高达50kHz,其频率响应可以覆盖旋转机械中常见的主要故障,包括套筒轴承损坏、对准误差、不平衡、摩擦、松动、传动装置故障、轴承磨损和空化等等。

bf80dd16-12c0-11ed-ba43-dac502259ad0.png

图5:ADXL100x系列MEMS加速度计

(图源:ADI)

ADXL100x MEMS加速度计可实现高分辨率振动测量,可提供从±50g到±500g不同量程范围的产品,且在较宽的频率范围内具有25μg/√Hz至125μg/√Hz的超低噪声密度,提供稳定和可重复的灵敏度,并可承受高达10,000g的外部冲击。

bf9fab7e-12c0-11ed-ba43-dac502259ad0.png

图6:ADXL1001/ADXL1002可支持》5kHz的高频振动响应(图源:ADI)

值得一提的是,ADXL100x系列MEMS加速度计还提供了一个通常压电加速度计不具备的特性,即集成了诸多智能特性,如超量程检测电路——当发生超过指定g值范围约2倍的严重超量程事件时,该电路会报警;同时ADXL100x可基于某种内部时钟智能禁用机制在持续发生超量程事件时保护传感器元件,这种方式可以减轻主机处理器的负担,并能增加传感器节点的智能化程度。


此外,ADXL100x系列MEMS加速度计紧凑的LFCSP封装、-40°C至+125°C的宽工作温度范围、低功耗的特性,都有助于将其更便利地融合到工业物联网的应用中,成为工业4.0中不可或缺的一部分。

bfced0c0-12c0-11ed-ba43-dac502259ad0.png

图7:ADI为CbM提供丰富的MEMS加速度计产品

(图源:ADI)

打造高性能的信号链

当然,MEMS加速度计性能再突出,其在整个电机CbM的信号和数据链处理中,也只是迈出了第一步。想要打造一个高性能的电机CbM和预测性维护方案,需要一个完整的系统做支撑。其中主要包括以下几个关键部分:

检测模块

主要是基于MEMS加速度计的振动和冲击检测单元,提供高精度的测量。有时还需要集成温度传感等其他感测功能。

数据采集

高保真的数据采集可以将传感器捕获的振动、冲击、温度、声学、压力、电压和电流信号转换为数字信号,从而转化为有价值的数据,成为洞察和决策的基础。

电源管理

小尺寸、高效率的解决方案,确保小型化的智能传感器能够在恶劣的工业应用中可靠运行。

数据处理

超低功耗MCU或其他主控器件可以对工业边缘节点上发生的事件做出本地决策,并经过筛选将更重要的数据发送至云端,以建立更全面的洞察。

有线/无线连接

通信模块可以在恶劣的工业环境中,确保相关电机健康状况数据可靠地传送到PLC和制造执行系统(MES),加速CbM部署。

基于AI的云洞察力

建立在云端更强大计算资源基础上的人工智能(AI),可以检测和解译声音、振动、压力、电流或温度等数据,以实现连续状态监控和按需诊断,并通过与CbM领域专家交互不断学习和升级。

c01b1660-12c0-11ed-ba43-dac502259ad0.png

图8:电机CbM和预测性维护方案系统架构

(图源:ADI)

在这样一个长长的信号和数据链中,想要确保数据的可靠性和准确性,就需要为各个功能模块选择合适的高性能器件。比如,为了保证数据采集模块能够实现高性能的信号调理,就要在放大器、ADC、基准电压源等模拟器件的选型上花一番心思(如图8)。在运算放大器的选型上,ADI的LT6015 Over-The-Top 精密运算放大器是一款值得推荐的器件。这是一款单通道轨到轨输入运算放大器,具有低于50μV的输入失调电压。这些放大器可采用单电源和分离电源工作(总电压为3V至50V),每个放大器仅吸收315μA电流。它们具有反向电池保护功能,在高达50V的反向电源电压下。其吸收电流非常小。


LT6015能驱动高达25mA的负载,并可在使用200pF的容性负载时保持稳定的单位增益。该放大器的Over-The-Top 输入级可在严酷环境中提供额外的保护。其输入共模范围从V-扩展至V+及以上,具体来讲这些放大器可在输入为V-至76V的条件下工作,内部电阻器负责保护输入免遭低于负电源25V的瞬变故障的损坏。

c03c4dda-12c0-11ed-ba43-dac502259ad0.png

图9:LT6015 Over-The-Top精密运算放大器

(图源:ADI)

在高精度、低功耗基准电压源的选型上,ADR45xx基准电压源是一个不错的选择。该系列产品的最大初始误差为±0.02%,具有出色的温度稳定性和低输出噪声。由于使用了新的内核拓扑结构来提高精度,ADR45xx基准电压源同时提供出色的温度稳定性和噪声性能。该款基准电压源具有低热致输出电压迟滞和低长期输出电压漂移,因此提高了寿命和温度范围内的系统精度。


同时,ADR45xx系列的最大工作电流为950μA,提供了出色的低功耗特性;而-40°C至+125°C的宽温度范围使其适合于广泛的工业应用。

c0759298-12c0-11ed-ba43-dac502259ad0.png

图10:ADR45xx基准电压源

当然,ADI为实现高精度数据采集所提供的产品远不止上述两款,而是包括一整套CbM信号链和数据链解决方案,这就省去了大家选料、调试等繁复的开发工作。


本文小结

随着工业4.0的推进,以基于CbM的预测性维护替代传统的电机维护方式,已经成为大家普遍的共识。而想要打造这样一套能够实时感知电机健康状态,按需进行维护工作的系统,需要围绕整个信号链和数据链构建一个整体的解决方案。其中不仅需要高性价比的传感器,也需要高精度的信号调理器件、可靠的电源管理器件,以及高效的数据传输和处理解决方案。


这时,与ADI这样具有丰富产品组合、能够提供一站式解决方案的技术厂商合作,其价值就凸显出来了。由此带来的便利性和可扩展性,能够让工业4.0的理念深入到未来制造业的每一根“毛细血管”,让制造业的“肌体”更为健壮和有力。  


关键字:电机  预测性维护 引用地址:针对电机的预测性维护

上一篇:直流电机控制器如何工作?
下一篇:电机控制设计解决方案

推荐阅读最新更新时间:2024-11-10 10:20

电机碳化硅技术指标是什么 碳化硅国家技术标准介绍
电机碳化硅技术指标是什么 碳化硅国家技术标准介绍 以碳化硅(SiC)为代表的第三代 半导体 材料的发展开始受到重视,并在多个领域得到广泛的应用,并且展现出了良好的发展前景。 碳化硅(SiC)是第三代半导体材料代表之一,是C元素和Si元素形成的化合物。跟传统半导体材料硅相比,它具有高临界击穿电场、高 电子 迁移率等明显的优势,是制造 高压 、高温、抗辐照功率半导体器件的优良半导体材料,也是目前综合性能最好、商品化程度最高、技术最成熟的第三代半导体材料 碳化硅主要性能指标 SiC是共价键很强的化合物,主要性能指标见表1.1。 碳化硅质制品可按碳化硅含量、结合剂种类和加入量来分类,材料的性能很大程序上取决于材料中碳
[汽车电子]
<font color='red'>电机</font>碳化硅技术指标是什么 碳化硅国家技术标准介绍
步进电机发热问题及对策
步进电机作为一种数字式执行元件,在运动控制系统中得到广泛的应用。许多用户朋友在使用步进电机的时候,感觉电机工作时有较大的发热,心存疑虑,不知这种现象是否正常。实际上发热是步进电机的一个普遍现象,但怎样的发热程度才算正常,以及如何尽量减小步进电机发热呢?以下是一些简单的分析。 1、步进电机为什么会发热 对于各种步进电机而言,内部都是由铁芯和绕组线圈组成的。绕组有电阻,通电会产生损耗,损耗大小与电阻和电流的平方成正比,这就是我们常说的铜陨,如果电流不是标准的直流或正弦波,还会产生谐波损耗;铁心有磁滞涡流效应,在交变磁场中也会产生损耗,其大小与材料、电流、频率、电压有关,这叫铁损。铜损和铁损都会以发热的形式表现出来,从而影响电机的效率
[嵌入式]
伺服电机编码器的型号怎么看
伺服电机编码器是伺服电机的重要组成部分,它能够将电机的旋转角度、速度等信息转换为电信号,为控制系统提供精确的位置和速度反馈。 一、伺服电机编码器的分类 1.1 增量式编码器 增量式编码器是一种常见的编码器类型,它通过测量电机轴的旋转角度变化来提供位置和速度信息。增量式编码器通常有两个输出信号,分别为A相和B相,它们之间存在90度的相位差。通过测量A相和B相的脉冲数,可以计算出电机的旋转角度。 1.2 绝对式编码器 绝对式编码器与增量式编码器不同,它能够直接提供电机的绝对位置信息。绝对式编码器通常使用二进制编码方式,每个位置都有一个唯一的编码值。绝对式编码器的优点是无需初始化,可以直接提供准确的位置信息,但成本相对较高。 1.3
[嵌入式]
电机矢量控制的重要分析方法
在电机的运行中,是由电机定子和转子磁场同步旋转,建立的一个具有同步旋转速度的旋转坐标系,这个旋转坐标系就是常说的D-Q旋转坐标系。在该旋转坐标系上,所有电信号都可以描述为常数。为了方便电机矢量控制问题的研究,能否由仪器直接得到D-Q变换的结果呢? D-Q变换是一种解耦控制方法,它将异步电动机的三相绕组变换为等价的二相绕组,并且把旋转坐标系变换成正交的静止坐标,即可得到用直流量表示电压及电流的关系式。D-Q变换使得各个控制量可以分别控制,可以消除谐波电压和不对称电压的影响,由于应用了同步旋转坐标变换,容易实现基波与谐波的分离。 由于直流电机的主磁通基本上唯一地由励磁绕组的励磁电流决定,所以这是直流电机的数学模型及其控制系统比
[嵌入式]
<font color='red'>电机</font>矢量控制的重要分析方法
HR8828内置步进表的集成微步进电机驱动器介绍
描述 HR8828是一种内置步进表的集成微步进电机驱动器,为打印机、扫描仪和其它自动化设备提供解决方案。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32步进模式工作。步进模式由逻辑输入MODEx选择。输出驱动能力达到38V和±3.5A。HR8828的衰减模式可编程。 译码器是HR8828易于实施的关键。通过STEP简单的输入一个脉冲就可以使电机完成一次步进,省去了相序表,高频控制线及复杂的编程接口。这使其更适于在没有复杂的微处理器或微处理器负担过重的场合。 内部的同步整流控制电路改善了PWM操作时的功耗。内部保护电路包括:带迟滞额过热保护、欠压锁定及过流保护。不需要特别的上电时序。 HR8828提供一种带有
[嵌入式]
单片机控制斯泰普步进电机驱动器工作原理
步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。   1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。   开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁
[单片机]
扁线电机激光焊接工艺的8大应用难点
800V平台?SiC功率器件?还是轮毂电机? 作为当下最热门的技术趋势之一,扁线电机可谓首当其冲。自从特斯拉也开始采用这一技术后,围绕扁线电机的相关话题也愈演愈烈。我们此前也曾发布过多篇有关扁线电机的技术文章: 扁线电机激光焊接工艺的8大应用难点 特斯拉扁线电机拆机解析 扁线VS圆线优劣势总结 大陆集团48V扁线电驱生产过程 宝马第5代电驱系统扁线电机定子产线 在大众看来,圆线电机与扁线电机的区别仅仅是外观上的变化以及几个关键数字的变动,但是对于制造企业正是这一种改变使得整个工艺流程以及生产设备都需要进行调整。 在实际上生产中,扁线电机会比当前的圆线生产要求更高的稳定性和合格率。今天我们就来看看,扁线电机定子生产过程中,当
[嵌入式]
扁线<font color='red'>电机</font>激光焊接工艺的8大应用难点
EPC新推100 V GaN FET助力实现更小的电机驱动器, 用于电动自行车、机器人和无人机
基于氮化镓器件的EPC9194逆变器参考设计显着提高了电机驱动系统的效率、扭矩而同时使得单位重量功率(比功率)增加了一倍以上 。该逆变器非常微型,可集成到电机外壳中,从而实现最低的电磁干扰、最高的密度和最輕的重量。 宜普电源转换公司宣布推出三相BLDC电机驱动逆变器参考设计(EPC9194)。它的工作输入电源电压范围为 14V ~60V,可提供高达60 Apk(40 ARMS)的输出电流。此电压范围和功率使该解决方案非常适合用于各种三相BLDC电机驱动器,包括电动自行车、电动滑板车、无人机、机器人和直流伺服电机。 EPC9194演示板采用 3mm x 5mm QFN 封装的6个100 V eGaN FET(EPC23
[机器人]
EPC新推100 V GaN FET助力实现更小的<font color='red'>电机</font>驱动器,  用于电动自行车、机器人和无人机
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved