光学式、磁式和电容式三种编码器对比

发布者:upsilon30最新更新时间:2024-01-29 来源: elecfans关键字:光学式  磁式  电容式  编码器 手机看文章 扫描二维码
随时随地手机看文章

编码器在运动控制类产品中比较常见,旋转编码器都是组成运动控制反馈回路的关键元器件,包括工业自动化设备和过程控制、机器人技术、医疗设备、能源、航空航天等。


作为将机械运动转换为电信号的器件,编码器可为工程师提供位置、速度、距离和方向等基本数据,用以优化整个系统的性能。


光学式、磁式和电容式是可供工程师使用的三种主要编码器技术。不过,要确定哪种技术最适合最终应用,还需要考虑一些因素。   本文将概述光学式、磁式和电容式三种编码器技术,并且略述各种技术的利弊权衡。   1 光电编码器 多年来,光学编码器一直都是运动控制应用市场的热门选择。它由 LED 光源(通常是红外光源)和光电探测器组成,二者分别位于编码器码盘两侧。 码盘由塑料或玻璃制成,上面间隔排列着一系列透光和不透光的线或槽。码盘旋转时,LED 光路被码盘上间隔排列的线或槽阻断,从而产生两路典型的方波 A 和 B 正交脉冲,可用于确定轴的旋转和速度。

592c0696-7b95-11ee-939d-92fbcf53809c.png

图 1:光学编码器的典型 A 和 B 正交脉冲,包括索引脉冲(图片来源:CUI Devices)
尽管光学编码器应用广泛,但仍有几点缺陷,在工业应用等多尘且肮脏的环境中,污染物会堆积在码盘上,从而阻碍 LED 光透射到光学传感器。   由于受污染的码盘可能会导致方波不连续或完全丢失,因而极大地影响了光学编码器的可靠性和精度。   LED 的使用寿命有限,最终总会烧坏,从而导致编码器故障。此外,玻璃或塑料码盘容易因振动或极端温度而损坏,因而限制了光学编码器在恶劣环境应用中的适用范围;将其组装到电机上不仅耗时,而且受污染的风险更大。   最后,如果光学编码器的分辨率较高,则会消耗 100 mA 以上的电流,进一步影响了它应用于移动设备或电池供电设备。

2 磁性编码器 磁性编码器的结构与光学编码器类似,但它利用的是磁场,而非光束。磁性编码器使用磁性码盘替代带槽光电码盘,磁性码盘上带有间隔排列的磁极,并在一列霍尔效应传感器或磁阻传感器上旋转。   码盘的任何转动都会使这些传感器产生响应,而产生的信号将传输至信号调理前端电路以确定轴的位置。   相较于光学编码器,磁性编码器的优势在于更耐用、抗振和抗冲击。而且,在遇到灰尘、污垢和油渍等污染物的情况下,光学编码器的性能会大打折扣,磁性编码器却不受影响,因此非常适合恶劣环境应用。

不过,电机(尤其是步进电机)产生的电磁干扰会对磁性编码器造成极大的影响,并且温度变化也会使其产生位置漂移。   此外,磁性编码器的分辨率和精度相对较低,在这方面远不及光学和电容式编码器。   3 电容式编码器 电容式编码器主要由三部分组成:转子、固定发射器和固定接收器。电容感应使用条状或线状纹路,一极位于固定元件上,另一极位于活动元件上,以构成可变电容器,并配置成一对接收器/发射器。   转子上蚀刻了正弦波纹路,随着电机轴的转动,这种纹路可产生特殊但可预测的信号。随后,该信号经由编码器的板载 ASIC 转换,以计算轴的位置和旋转方向。

59354d00-7b95-11ee-939d-92fbcf53809c.png

图 2:编码器码盘的比较(图片来源:CUI Devices)

4 对比优缺点 电容式编码器的工作原理与数字游标卡尺相同,因此它所提供的解决方案克服了光学和磁性编码器的许多缺点。 事实证明,CUI Devices 的 AMT 编码器系列所采用的这种基于电容的技术具有高可靠性、高精度的特性。   由于无需 LED 或视距,即使遇到会对光学编码器产生不利影响的环境污染物(如灰尘、污垢和油渍),电容式编码器也能达到预期的效果。   此外,相比光学编码器使用的玻璃码盘,它更不容易受到振动和极高/极低温度的影响。   如前所述,因为电容式编码器不存在 LED 烧坏的情况,所以使用寿命往往比光学编码器长。   因此,电容式编码器的封装尺寸更小,在整个分辨率范围内电流消耗更小,只有 6 至 18 mA,这就使它更适合电池供电应用。   鉴于电容式技术的稳健性、精度和分辨率均比磁性编码器高,因而后者所面临的电磁干扰和电气噪声对它的影响并不大。

此外,在灵活性和可编程性方面,电容式编码器的数字特性也能带来关键优势。因为光学或磁性编码器的分辨率是由编码器码盘决定,所以需要其他分辨率时,每次都要使用新的编码器,以致于设计和制造过程的时间和成本均会有所增加。   然而,电容式编码器具有一系列可编程的分辨率,为设计人员免去了每次需要新的分辨率时就要更换编码器的麻烦,这不仅减少了库存,而且简化了 PID 控制回路的微调和系统优化。   涉及 BLDC 电机换向时,电容式编码器允许数字对准和索引脉冲设置,而这项任务对于光学编码器而言可能既反复、又耗时。   内置的诊断功能使设计人员可以进一步访问系统数据,用以优化系统或现场排除故障。  

59491466-7b95-11ee-939d-92fbcf53809c.jpg

图 3:电容式、光学式和磁式技术的关键性能指标比较(图片来源:CUI Devices)   5 如何选择?   在许多运动控制应用中,温度、振动和环境污染物都是编码器必须应对的重要挑战因素。事实证明,电容式编码器可以+克服这些挑战。 与光学式或磁式技术相比,它可为设计人员提供可靠、精准且灵活的解决方案。   此外,电容式编码器还增加了可编程性和诊断功能,这种数字特性使其更适合现代物联网 (IoT) 和工业物联网 (IIoT) 应用。 


关键字:光学式  磁式  电容式  编码器 引用地址:光学式、磁式和电容式三种编码器对比

上一篇:变频器到电机的电缆长度应该怎么选配?
下一篇:如何防止电动机过热

推荐阅读最新更新时间:2024-11-13 13:12

51单片机使用ec11旋转编码器 数码管显示
#include reg51.h #define GPIO_DIG P0 unsigned char code DIG_CODE ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//显示0~9的值 int tmp = 1; #define uchar unsigned char sbit BB = P1^0;//接编码器A端 sbit AA = P1^1;//接编码器B端 void delayms(uchar count) { uchar i,j; for(i = 0; i count; i++) for(j = 0; j 120; j+
[单片机]
光敏二极管配作二极管编码器电路图
光敏二极管配作二进制编码器电路图
[模拟电子]
光敏二极管配作二极管<font color='red'>编码器</font>电路图
编码器在工业快速开门机中的应用
工业快速门,是指最快移动速度可达到2-2.5米/秒以上的快速打开、关闭的卷帘门,或者根据通行物高度可调节指定开度的快速打开与关闭的自动定位控制。传感器的加入可以解决传统的普通开门机普遍使用的电位器精度低的问题。 卷帘门的快速打开,尤其是按可调的指定开度打开及关闭,极大的减少了人员或车辆(如叉车,货车,工作设备等通行物)进出门的操作等待时间。快速门的高速启闭,同时对无尘环境控制较高的车间及特殊区域极其适用,能有效阻止粉尘,昆虫及污浊空气的流入。同时在冷库与工厂烘房、工厂环境保护等使用快速门可以减少能耗,达到节能减排效益。工业快速门在欧美、日本等发达工业国家早已普及多年。特别是生产型企业,车间与车间之间必定有快速门分隔。如果是食品、医药
[嵌入式]
触摸检测近接电容式传感技术
1831年,法拉第发现了电磁感应。他发现,导体在穿过磁场时产生与移动速度直接成正比的电压:导体移动速度越快,电压就越高。现在,感应式近接传感器使用法拉第的电磁感应定律,无需实际接触传导材料就能检测到它们的距离。然而,这些传感器的最大不足之处是它们只能检测金属导体,并且不同类型的金属对检测范围也会带来一定影响。 另一方面,近接电容式传感器遵守同一原理,但是能够检测具有传导性的任何事物或不同于传感器电极环境介电性能的任何事物。随着人机界面设计更多地采用触摸面板来可靠地响应命令,近接电容式传感器变得越来越普及。现在在大量不同的控制面板应用中,飞思卡尔的先进的MPR083和MPR084近接电容式触摸传感器控制器能够取代开关和按钮。MP
[测试测量]
触摸检测近接<font color='red'>电容式</font>传感技术
最精简的stm32编码器程序
#define ROTATE_A PAin(2) #define ROTATE_B PAin(3) s16 DATA=0; void EXTI2_IRQHandler(void) { if(EXTI_GetITStatus(EXTI_Line2) != RESET) { if(ROTATE_A!=ROTATE_B) { DATA++; } else DATA--; EXTI_ClearITPendingBit(EXTI_Line2); } } void main(void) { SystemInit(); delay
[单片机]
最精简的stm32<font color='red'>编码器</font>程序
五步轻松设计出电容式触摸传感器(3):家电及安全系统中的应用
我们在第2部分介绍了采用电容式感应按键替换机械按键时所需的布局情况,以及智能手机应用实例。在第3部分,我们不仅将介绍更多应用实例,而且还将介绍如何配置MBR器件 步骤3:为您的设计创建配置: 1.家用电器中的触摸按键 触摸按键可在电磁炉等家用电器中使用,取代机械按键。家用电器的用户界面(UI)具有防水性。用户用湿手触摸电磁炉按键是常有的事。同样,水或食物也有可能掉在电磁炉的UI面板上。即使沾上任何液体,按键也能正常工作。也就是说按键既不能寄存假触摸,也不能在有液体的情况下停止对触摸的响应。因此在大量应用中,防水性是电容感应按键的一项重要要求。其次,对用户来说按键触摸最直观的反馈是音频反馈。因此,音频反馈功能是另一项重要要求。 最适
[嵌入式]
五步轻松设计出<font color='red'>电容式</font>触摸传感器(3):家电及安全系统中的应用
交流伺服电机是不是用脉冲驱动?如果不是,那用什么驱动?
交流伺服电机通常使用交流电源驱动,并且需要通过特殊的控制器来控制电机的转速和方向。控制器通常会接收来自编码器或其他位置反馈设备的信号,并将其转换为电机控制信号,以实现精确的运动控制。   在某些应用中,脉冲信号可能会被用来触发控制器的运动命令,但本身并不是用于直接驱动电机的信号。   交流伺服电机一般是采用模拟驱动的方式,使用模拟信号来驱动伺服电机的速度和位置。具体来说,伺服电机驱动器会采集到与电机位置和速度相关的反馈信号,然后通过反馈控制算法进行控制,最终输出适合于电机的驱动信号。   脉冲驱动一般用于步进电机,而不是用于交流伺服电机。   脉冲怎么控制交流伺服电机?   交流伺服电机可以通过PWM脉冲控制器来
[嵌入式]
光学触控取代投射电容有谱
随着触控技术的应用越来越多面向,触控面板越做越薄也越做越大,加上智慧手表等穿戴式装置热潮兴起,让可饶式触控萤幕显示器的需求不断增加。然而,当触控面板走向大尺寸、可饶式应用时,在电容式触控面板当中具有独占性地位的透明导电膜ITO却面临许多几乎难以解决技术挑战。 为了解决ITO带来的难题,不少厂商急欲寻找其他取代ITO的方案如金属网格(Metal Mesh)、奈米碳管、银奈米线(Silver nanowires)等。除此之外,也有一群人选择走向光学式触控,例如时代光电,由于ITO在大尺寸面板上因良率不高导致成本昂贵,另外也因其材料特性而没办法应用在软性面板上,光学式触控技术在这些领域当中都展现了不少优势。时代光电总经理林志雄指
[手机便携]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多往期活动

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved