8位机嵌入式TCP通信速度的研究

发布者:幸福花开最新更新时间:2007-10-18 来源: 电子测量技术关键字:传输  纠错  协议  地址 手机看文章 扫描二维码
随时随地手机看文章

0 引 言

长久以来,串行RS 232和RS 485通信技术一直是自动化仪器、仪表中常用的通信标准。但近年来,随着计算机技术、网络技术、通信技术的发展及其在工业自动化系统中的应用,使得工业自动化系统和仪器、仪表领域加速了向智能化、数字化和网络化方向发展的进程。出现了电力线通信技术、无线红外和蓝牙通信技术、基于USB接口的通信技术、现场总线技术以及嵌入式Internet接入技术等新技术。其中基于嵌入式Internet接入技术的网络化仪器是近年提出的全新概念,它是仪器检测技术与现代计算机技术、网络通信技术、微电子技术深度融合的产物口。检测仪器接入Internet,成为执行测量和控制任务的仪器Web站点,这种网络化仪器可以像普通仪器那样按设定程序对相关物理量进行自动测控、存储和显示等,同时允许已授权的用户通过Internet远程对仪器进行操作、监控、故障诊断等。在具体的应用中,出现了不少问题,其中之一就是传输率和系统利用率不高,本文正是在这种背景下产生的。

1 TCP通信硬件接口

典型的8位机采用TCP协议接入Internet的以太网网络接口如图1所示。RTL8019AS以其优异的性价比,成为目前单片机以太网系统的首选以太网接口芯片。该芯片符合IEEE802.3 10Base2和10BaseT标准,具有自动奇偶检测和纠错功能,支持全双工工作模式。如图1中,RTL8019AS工作于8位跳线模式,数据线SD0~SD7与8位单片机(51系列)的数据线(AD0~AD7)相连,地址线A0~A4与8位单片机的地址线(A0~A4)相连。读写信号经74S04产生。RTL8019AS的基地址(配合引脚34(AEN))为0x8000H,对应RTL8019AS内部地址0x300H。RTL8019AS通过网络变压器HR901170A和RJ45接口与以太网相连接入internet,隔离网络上的干扰信号。

2 单片机系统中TCP通信问题分析

TCP协议是TCP/IP协议簇的核心,也是最复杂的协议。但由于其独特的自动检错和重发机制,实现了数据的可靠通信,但也正是由于其复杂性,在8位机上实现TCP协议通信耗时就比较多,传输速率低下。TCP协议的数据通信过程,以客户机为例进行分析。图2是典型的采集系统TCP数据通信的时间序列图。在建立连接后,由客户机向服务器发送数据。假设此时客户机的启始序列号为100,每次固定发送100字的样数据。服务器负责接受该数据,但不下发任何送数据,只确认所接收的数据,其启始序列号为50。对于单片机系统,由于其处理速度和内存资源的局限,通常的处理流程如图3。



由于服务器(一般为装有windows系统的微机或工业计算机)并不是收到数据就直接发送确认,而是继续等待接受序列中的其他数据。这就会经常触发服务器的接受延时的确认算法,这将导致剩下的数据不能在200 ms内发送。对于高速交互的采样系统而言,这将产生明显的时延。Host Requirements RFC申明TCP必须实现Nagle算法,但必须为用户提供一种方法来关闭该算法在某个连接上的执行。该算法要求TCP连接上最多只能有一个未被确认的未完成的小分组,在该分组的确认到达之前不能发送其他的小分组。实际使用Sniffer监听软件也得到同样的结果,在接收到下位机的数据包后,上位机延时200 ms后,发送确认包,其传输速度为10 packet/s,实际网络利用率不足1%。由图3可见,只要提高服务器确认发送的速度,就可以提高通信的速度。对于本系统采用33M的主频(C051F单片机)发送一个分组(1 024 B)和接受一个确认分组(60 B)总用时为3~3.5 ms,关闭Nagle算法后,使用Sniffer监听分析数据包,系统上位机在收到数据包后,立即发送确认包,期间只有0.3 ms左右的网络延时,系统速率提高到设定的20 ms发送一次采样数据,即100 packet/s,系统利用率提高为为原来的10倍。

然而对于有些应用场合,每次采样的数据量并不大(小于100 B),采用关闭Nagle 算法来提高传输率是不理想的,因为这样增加了网络上传输的分组的数量,同时增大了客户机(下位机)处理这些多出来的分组的时间消耗,降低了系统利用率,增大了传输出错率,大幅度的减少了持续传输时间。实验中,当采用高频单片机(100M主频),将数据通信速率提高到1 000 packet/s,发现传输错误的数据包达到5%,同时传输持续时间由原来的大于48 h不间断,减少为不足2 h,系统利用率也只有不到2%,同时已无法继续提高传输速度(由硬件条件限制)。为解决这个问题,同过分析具体TCP通信的各环节对时间的消耗过程,寻求在已有的硬件基础上,通过软件来解决问题。

首先是数据分组打包。这里的耗时与要打包的数据量和主频有关。为了便于计算,以下都用最简单的MCS-8051单片机为例进行分析。对于发送100 B的数据,外界晶振为12M的51单片机,其一个机器周期为1μs。典型的打包代码(包括TCP包和IP包)的执行总周期约为2 200个机器周期(具体大小与编写软件所使用的语言和编译器有关),用时为2.2 ms。

其次是数据备份。TCP协议需要超时重发,因而备份已发出而未收到确认的数据分组是必要的。这里的耗时与数据量和主频以及数据本备份的存储器类型有关。对于100 B数据和40 B的头部(包括TCP包的20 B头部和IP包的20 B头部),总共140 B的数据备份,采用外部存储器,典型代码的执行周期为1 130个机器周期,用时为1.13 ms。

再次是发送数据分组。这里的耗时也与数据量和主频有关。典型发送分组代码的执行总周期为2 200个机器周期,耗时为2.2 ms。

最后确认分组。这里要做的工作有:检测接口芯片,判断分组类型,拆分IP包,拆分TCP包,典型代码的执行周期为4 130个机器周期,用时4.13 ms。

总共用时9.66 ms,其中接受确认分组耗时最多,占总用时的42.8%。

3 改进后的TCP通信方案

由上面分析可以看出,对于小分组来说,接收确认分组的过程比较复杂,因而耗时也最多。因而控制服务器确认分组的发送数量,成为提高效率的关键。

研究发现通过调整Nagle算法的延时时间(每个接口的延迟ACK定时器可通过设定注册表表项TCPDelAckTicks 的值 (HKLM \ SYSTEM \CurrentControlSet\Services\Tcpip\Parameters\Interface\)来调整,该注册表表项在MicrosoftWindows NT 4.0 Service Pack 4中首次引进)和采样单片机的发送流程来控制服务器发送确认的数量。

如图4所示,这里发送数据分组并没有等待确认分组这个过程。当有确认到达时,所做的工作正常情况下和图3所示的系统没什么区别,只是在当丢失了分组后的异常状态出现后,才在更新连接状态时处理了超时检测和出错重发等事件。之后在数据打包后也没有备份,这里是采用了大存储器数据偏移技术,也就是说在一个分组的确认未到达时,其原始数据是不会被覆盖的,新的分组打包在其后的内存单元中,这样就节省了数据备份所消耗的时间,不过无形中增大了对内存的需求。但本应用针对的是小分组情况,所以实际需求的内存并不大。实际工作中,为了使系统稳定工作,应建立2个TCP连接,一个用于服务器(上位机)发送控制命令和进行参数设定使用,一个用于客户机(下位机)上传采样数据使用。虽然TCP可以双向传送数据,可实际工作中,发现这样在高速通信下出错率比双连接单向数据通信要高出许多,主要是因为客户机(下位机)对TCP头部的确认号和序列号的调整容易出错所致。实际使用3~5个采样分组发送一个确认分组。因为延时太短体现不了效率的提高,但延时太长,如果出错,将产生大量重发分组的情况,影响网络性能,同时也增大了对内存的需求量。通过使用Snifferr软件进行监听比较,在同样的采样速率下,在改进前,发送包速率为500packet/s,接收确认包速率为500 packte/s,出错率5%,持续传输时间小于2 h;改进后,发送包速率为500 packet/s,接收确认包速率为183 packet/s,出错率小于0.1%,持续时间大于48 h。同时,同样的硬件条件下,理论上可以进一步提高采样速率。

4 典型应用

对于高速、低数据量的采集或测控系统,如石油管道的查漏和修复系统,要求高速采集对管壁的超声波扫描信号,通常结合温度、压力、深度和角度信号为一组采样信号,其总量不足20 B。这些系统要求高的采样速率,但每次采集的数据并不多,这就产生了大量小的数据分组,这些小分组将迅速降低系统性能和网络性能。采用本方案,可以较好地解决这些问题。

5 结 论

本文通过对TCP协议具体低层实现过程中各个环节对时间消耗的分析,找出了提高系统效率,提高通信速度的方法。实践证明这样的设计提高了系统的效率,提高数据传输率,降低了网络上传送冗余分组的数量,明显改善了系统性能。特别适用于高速、低数据量的采集或测控系统。

关键字:传输  纠错  协议  地址 引用地址:8位机嵌入式TCP通信速度的研究

上一篇:嵌入式系统中串口通信帧的同步方法
下一篇:专家:SOA尚处发展中 6方面存在严重不足

推荐阅读最新更新时间:2024-05-02 20:38

快速学Arm(12)--APB,AHB地址与接口的关系
在快速学Arm(3)中,我画了一个LPC2478的存储空间的分别图,在存储空间最上面的两块,0xE000 0000 ~ 0xEFFF FFFF(APB)和0xF000 0000 ~ 0xFFFF FFFF(AHB)两块地址空间.这两块空间分别是大概250M字节的空间.每个250M空间分成36块,每块大概16K大小. 在LPC2478的文档中,APB的各个设备的寄存器空间是按下面的方式分配的: 有过Arm或者其他单片机开发经验的人对这种地址分配应该不难理解,但对于初学者可能会有点晕.如果大家打算从LPC2478(ARM7TDMI-S的2400系列)开始学起的话,有两个文档是要用来经常查阅的: lpc2478_ds.p
[单片机]
快速学Arm(12)--APB,AHB<font color='red'>地址</font>与接口的关系
提高汉明码对突发干扰的纠错能力
摘要:在简要介绍汉明码编码原理的基础上,详细分析干扰对汉明码纠错的影响;通过对汉明码重新组织排列,在不增加代码冗余的前提下,提高汉明码抗突发干扰的能力,为汉明码在实际中的应用提供新的思路;给出基于单片机的汇编语言汉明码测试程序。 关键词:汉明码 突发干扰 纠错 引言 汉明码是在原编码的基础上附加一部分代码,使其满足纠错码的条件。它属于线性分组码,由于线性码的编码和译码容易实现,至今仍是应用最广泛的一类码。汉明码的抗干扰能力较强,但付出的代介也很大,比如8比特汉明码有效信息只有总编码长度的一半,可以纠正1个差错发现2个差错。在实际应用中常常存在各种突发干扰,使连续多位数据发生差错。为了纠正3个以上的差错,就要加大码距,使代码冗
[网络通信]
儒卓力和英飞凌达成亚洲市场分销协议
儒卓力全球营销总监Gerhard Weinhardt表示:“亚洲市场对于电源和汽车应用特别感兴趣,还有自动化和照明控制领域也已成为焦点。我们看到电动自行车和电动摩托车在亚洲地区拥有很大的市场;特别在中国市场,我们可以通过英飞凌产品系列提供最相配的产品。相比欧洲地区,中国推动电动汽车市场发展的力度更大。” 与亚洲市场密切相关的电源领域产品包括电源管理MOSFET、IGBT、SiC和驱动器产品。 就汽车领域而言,市场重点是霍尔传感器、电流传感器以及特定的微控制器。 加密技术是另一个重要领域,英飞凌在这个市场提供可保护系统免受黑客攻击的特定高端解决方案。 儒卓力战略营销总监Andreas Mangler解释说:“英飞凌是针对目
[嵌入式]
儒卓力和英飞凌达成亚洲市场分销<font color='red'>协议</font>
传输技术不断突破 无线安防应用成焦点
    无线产品是一些小型商业、家庭用户的首选,在民用市场中,无线安防主要的应用是无线客户端,也就是通常说的手机监控。通过智能手机终端APP软件应用,随时随地通过手机客户端即可查看家中、商铺的情况。随着3G网络的日益成熟,手机视频的质量有了极大提升。同时,3G与WLAN系统融合,更加促进家用安防监控业务的发展,手机视频监控业务走入普通居民家庭的条件已经成熟。      安防步入无线监控时代      随着无线传输技术的不断突破,新一代无线传输技术的引入,为我国现代安防的发展注入了新的活力。      无线监控可分两大类,一是固定设备获取由移动设备传输来的信息,这一类别常见于警用方面。二是由固定设备传输信息至移动终端,这一类别则更多
[安防电子]
三分钟教会你借助仿真研究无线能量传输
无线能量传输(WPT) 是指发射和接收单元之间的能量传输,这项技术主要用于对电子设备进行无线充电,比如手机和电动汽车。虽然无线能量传输可以带来多项优势,但它仍面临一些亟待解决的难题。这时就可以借助仿真的力量。例如,在一些WPT 技术中,设备必须按照特定的方向放置才能有效充电。现在,我们将分析方向对两种WPT 天线功能的影响。 无线能量传输技术简介 在我们的日常生活中,电子器件是一个非常重要的组成部分。想象一下,您不需要电线或任何线缆就能为这些设备充电。无线能量传输技术(WPT) 的发展使这一切成为可能,它为电气设备提供了一种简单的充电方法,并支持同时对多个设备进行充电。随着技术的持续发展,我们已经在越来越多的领域中实现了无
[模拟电子]
VGA信号传输技术比较
VGA信号传输是最近的视频信号传输的热点,各种不同的传输方式引发很多工程商的关注,各种不同的宣传也模糊了工程商的正常判断,作为双绞线传输的生产商,就VGA传输的发展及原理做一个小小的论述,希望可以澄清大家可能的误判!   VGA信号包含有R/G/B/H/V五种,分别是三原色和行场同步信号。VGA线材虽然包含15根线,VGA线材里面实际传输图像信号的只有5根线,所以看VGA线材好不好首先看用来传输RGBHV的那五根线的线芯质量。   VGA线芯虽然很细小,衰减比较大,VGA线材在短距离传输的时候基本不会有问题,。而早期为解决传输距离远的难题,一般都是加大线芯直径,将铜芯做得很粗。但是传输距离长以后,VGA线里面五种信号相互之间产生串
[模拟电子]
汽车传感器MIPI CSI-2和PHY传输和接收模块设计
传感器 、这些传感器输出的ML推断结果是自动辅助驾驶的重要核心。Mixel和 Ram bus在MI PI DevCon上就这种传输技术MIPI进行了讲解,涉及了来自Rambus的摄像头串行 接口 (MIPI CSI -2)和来自Mixel的物理接口(MIPI C-PHY和MIPI D-PHY) MIPI CSI-2和PHY传输和接收模块 MIPI CSI-2是定义摄像头和ISP(图像信号 处理器 )之间串行接口的功能。像素从一端流入,最终从另一端流出,所以该接口需要一个发送功能和一个接收功能。由于这些功能必须能够连接任何摄像头(或多个摄像头)到任何ISP,需要很大的灵活性,比如传感器和最终消费者之间的带宽匹配,允许例如连
[汽车电子]
汽车传感器MIPI CSI-2和PHY<font color='red'>传输</font>和接收模块设计
中美堪称“奇迹”的巨额商业协议粉饰两国的失衡贸易
路透北京/上海11月9日 - 美国总统特朗普回到美国的时候,可以声称自己首次访问北京就拿下了超过2,500亿美元的商业合作协议。这些协议最终是否能达到如此规模,则是另外的问题。 2017年11月9日,北京,美国总统特朗普和中国国家主席习近平在人民大会党会见中美企业家。REUTERS/Damir Sagolj 在特朗普和中国国家主席习近平的见证下,美国飞机制造商波音(BA.N)、美国通用电气(GE) (GE.N)和芯片巨头高通(QCOM.O)在北京与中方伙伴签署了数以十亿美元计的协议。 “这的确是一个奇迹,”中国商务部长钟山在北京的一场记者会上表示。 这些总计达2,500亿美元的商业合作协议,凸显特朗普急于让外界看到他在努力解决与中
[手机便携]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved