试论多进制数字调制技术及其应用

发布者:chaohuangmeitao最新更新时间:2008-05-21 来源: 中国有线电视关键字:移相  幅度  效率  通信  误码  频谱  振幅  二进制  载波 手机看文章 扫描二维码
随时随地手机看文章

  数字电视必须使用3项关键技术:提高传输频带利用率的多进制数字调制技术、对电视图像及伴音进行压缩编码的技术和提高数字电视传输可靠性的纠错编码等信道编码技术。现在广泛使用的数字调制技术,如幅度键控(ASK)、移相键控(PSK)和移频键控(FSK)等,因传输效率低而无法满足数字电视和移动通信等高要求的现代通信系统。本文介绍了抗干扰性能强、误码性能好、频谱利用率高的多进制数字调制技术及其应用。

  1 常用多进制数字调制技术及应用

  1.1 QPSK(四相相移键控)技术及应用

  (1)QPSK技术

  在相移键控(PSK)技术中,通过改变载波信号的相位来表示二进制数0、1,而相位改变的同时,最大振幅和频率则保持不变。例如,可以用两种不同相位的正弦信号分别表示0和1,用0°相位表示0,用180°相位表示1,这种PSK技术称为二相位PSK或2-PSK,信号之间的相位差为180°。

  同样,可以用4种不同相位的正弦信号分别表示00、01、10和11,例如,用0°相位表示00,用90°相位表示01,用180°相位表示10,用270°相位表示11。这样每种相位的正弦信号可以表示两位二进制信息,信号之间的相位差为90°,这种PSK技术称为四相位PSK或QPSK,由于4个相位与四进制的4个符号相对应,也称四进制PSK调制。因每种相位的正弦信号可以表示两位二进制信息,与2-PSK相比,其编码效率提高了1倍。

  以此类推,当不同相位的载波数为8、16……时,分别称为8-PSK(八进制PSK)、16-PSK(十六进制PSK)……,理论上,不同相位差的载波越多,可以表征的数字输入信息越多,频带的压缩能力越强,可以减小由于信道特性引起的码间串扰的影响,从而提高数字

  通信的有效性。但在多相调制时,相位取值数增大,信号之间的相位差也就减小,传输的可靠性将随之降低,因而实际中用得较多的是四相制(4-PSK)和八相制(8-PSK)。

  (2)QPSK的应用

  QPSK广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入与移动通信及有线电视的上行传输。在卫星数字电视传输中普遍采用的QPSK调谐器可以说是当今卫星数字电视传输中对卫星功率、传输效率、抗干扰性以及天线尺寸等多种因素综合考虑的最佳选择。欧洲与日本的数字电视首先考虑的是卫星信道,采用QPSK调制,我国也出现了采用QPSK调制解调的卫星广播和数字电视机。

  要实现卫星电视的数字化,必须在卫视传输中采用高效的调制器和先进的压缩技术,因为我国现行的PAL制彩色电视是采用625行/50场,其视频带宽5 MHz,根据4∶2∶2的标准,625行/50场的亮度信号(Y)的取样频率为13.5 MHz,每个色差信号(R-Y)和(B-Y)的取样频率均为6.75 MHz。当Y,(R-Y),(B-Y)信号的每个取样为8 bit量化时,电视信号经数字化后的亮度信号码率为13.5×8=108 Mbps,色度信号的码率为6.75×8×2=108 Mbps,总码率为色亮码率之和,即216 Mbps,在现有的传输媒介中要传送这样宽带的数字电视信号是不可能的

  采用四相相移键控(QPSK)调制之后,可把传输的带宽降到100 MHz左右,再使用电视图像及伴音压缩编码技术,常用MPEG-2(运动图像压缩编码标准),可以把数字电视信号中包含的冗余信息去除,即在保证接收端电视图像质量的前提下,采用数字视频压缩技术,可以降低传送码率,使传送带宽减少,实现多路传输。目前,已经可以做到把216 Mbps速率的数字电视信号压缩到5 Mbps,使原来只能传送1路模拟电视的36 Mbps卫星转发器,现在可同时传送5路数字电视信号。这样,数字信号经码率压缩技术处理后,信号传输容量会得到数倍甚至数十倍的增加。

  康佳ST2989型彩电就是一种卫视数字彩色电视机,它既能接收地面广播和有线电视信号,又能接收卫星转发的以QPSK(正交相移键控调制)数字方式传送的未加密的卫星信号DVB。卫视接收单元电路采用QPSK解调、MPEG-2视音频解压的卫星数字视频广播(DVB-S)接收机的方案。

  1.2 QAM(正交幅度调制)技术及应用

  (1) QAM技术

  正交幅度调制(QAM)是一种矢量调制,它将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(cos wt和sin wt)上。这样与幅度调制(AM)相比,其频谱利用率提高1倍。QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,目前QAM最高已达到1 024QAM(1 024个样点)。样点数目越多,其传输效率越高,例如具有16个样点的16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM的每个符号和周期传送4比特。

  (2)QAM应用

  QAM调制主要用在有线数字视频广播和宽带接入等通信系统方面。

  QAM调制方式的多媒体高速宽带数据广播系统采用DVB-C有线数字视频广播标准,代表着数字化发展方向,有16QAM、32QAM、64QAM、128QAM、256QAM之分,数字越大,频带利用率越高,但同时抗干扰能力也随之降低。采用64QAM调制方式,可在传统的8 MHz模拟频道带宽上传输约40 Mbps数据流,可在一个标准PAL通道上传输4~8套数字电视节目,它的末端用户可以是计算机,也可以是带数字机顶盒的电视机。QAM在安全授权方面比QPSK调制方式更可靠,完全能满足海量信息传输的需要,其传输速率更高,通道还可优化。

  QAM目前还被广泛用于ADSL调制技术,在QAM调制中,发送数据在比特/符号编码器内被分成速率各为原来1/2的两路信号,分别与一对正交调制分量相乘,求和后输出。接收端完成相反过程,正交解调出两个相反码流,均衡器补偿由信道引起的失真,判决器识别复数信号并映射回二进制信号。采用QAM调制技术,信道带宽至少要等于码元速率,为了定时恢复,还需要另外的带宽,一般要增加15%左右。与其他调制技术相比,QAM调制技术具有充分利用带宽、抗噪声强等特点。

  1.3 VSB(残留边带调制)技术及应用

  (1)VSB技术

  残留边带调制(VSB)是一种幅度调制法(AM),它是在双边带调制的基础上,通过设计适当的输出滤波器,使信号一个边带的频谱成分原则上保留,另一个边带频谱成分只保留小部分(残留)。该调制方法既比双边带调制节省频谱,又比单边带易于解调。在残留边带调制方式中,根据调制电平级数的不同,VSB可分为4-VSB,8-VSB,16-VSB等,其中的数字表示调制电平级数。如8-VSB,表示有8种调制电平,即+7,+5,+3,+1,-1,-3,-5,-7等8种电平(和八进制的8个符号相对应),这样每个调制符号可携带3比特信息。16-VSB,32-VSB的工作原理与此类似。

  (2)VSB的应用

  由于VSB抗多径能力差,在移动接收方面,即使采用4-VSB,其效果也不令人满意。但残留边带调制的优点是技术成熟,便于实现,对发射机功放的峰均比要求低。上海交通大学、浙江大学等高校和研究所自主研制和完成了我国第一套完整的含基于单载波VSB技术和多载波COFDM(编码的正交频分复用调制)技术两种传输方案的HDTV地面广播传输系统,已实现了我国数字高清晰度电视系统技术的整体重大突破,率先攻克了单载波调制技术无法在数字电视地面广播传输方面同时实现固定/移动接收这一核心技术难题,解决了数字高清晰度电视系统的7项重大关键技术。

  1.4 COFDM(正交频分复用)调制技术及应用

  正交频分复用是一种多载波调制方式。编码的正交频分复用就是将经过信道编码后的数据符号分别调制到频域上相互正交的大量子载波上,然后将所有调制后信号叠加(复用),形成OFDM时域符号。

  由于正交频分复用采用大量(N个)子载波的并行传输,在相等的传输数据率下,OFDM时域符号长度是单载波符号长度的N倍,这样其抗符号间干扰(ISI)的能力可显著提高,从而减轻对均衡的要求。

  由于OFDM符号是大量相互独立信号的叠加,从统计意义上讲,其幅度近似服从高斯分布,这就造成OFDM信号的峰均功率比高,从而提高了对发射机功放线性度的要求,降低了发射机的功率效率。

  目前,欧洲数字电视地面传输标准DVB-T中采用的就是COFDM。由于COFDM调制抗动态多径干扰能力强,使得其既可用于地面传输固定接收,也可用于便携和移动接收。在我国数字电视地面广播上海试验区,公交920路进行的测试表明,即使在城区多径丰富的地区,接收效果也良好。

  1.5 各种多进制调制技术的比较

  表1列出了各种数字调制技术频谱利用率的理论值和实用值。表2为4种典型数字调制技术实现的难易比较。

  表1数字调制技术频谱利用率(单位:bit/s/Hz)

  调制技术理论值实用值

    QPSK21.4

    16QAM43.3

    32QAM24.3

    64QAM65.3

    128QAM76.1

    256QAM86.6

    1024QAM106.6

    OFDM-16QAM43.3

    8VSB5.3

    16VSB7.1

  表2 QPSK、QAM、VSB、OFDM数字调制技术实现难易比较

  调制技术实现难易单频组网能力应用地区实现复杂度

    QPSK易有欧洲、日本、中国易

    QAM易无美国相对复杂

    VSB易无美国易

    OFDM可以有欧洲复杂

  2 数字调制新技术

  2.1 离散小波多音调制(DWMT)

  DWMT是一个基于小波传输的多载波调制技术,它将传输频带分成几百个频谱相互独立的信道,将数据调制在各子信道上,经过小波变换处理,取得时频域的分离,以减少码间干扰和信道间干扰。多载波系统能灵活地、最大限度地利用信道,例如:对信噪比较高的子信道可采用传输效率高的调制技术(64QAM),信噪比较低的子信道采用抗干扰能力强的调制技术(QPSK),而对信噪比低于门限的子信道则不用,这样可避免窄带干扰。DWMT针对不同的子信道质量(如按SNR)来选择调制方式,从而使它比单载波调制技术(QPSK、QAM或VSB)有更高的传输效率。DWMT无需保护时间,也使频带利用率得以提高,频带管理灵活。由于整个频带被分成许多子信道,使得DWMT能支持各种速率业务和多种访问协议,这对HFC网络是特别重要的。DWMT抗干扰能力强,能采用关闭子信道方式来避开窄带干扰的子信道。

  2.2 同步离散多音调制(SDMT)

  SDMT技术一般由两项技术组成:DMT(离散多音调制)和TDD(时分双工)。

  (1)DMT传输

  DMT采用大量(典型值为256)正交幅度调制(QAM)信号,因此DMT信道由256个子信道组成,每一个被调制在不同的中心频率上,每一个具有同样的带宽,称之为多音调制。DMT接收机对每个音接收的信号质量进行监测,如果发现某一个或几个音的质量(信噪比)下降,接收机就计算出一个修改后的比特分配方案,使接收的误差性能有所改进。接收机把这种比特分配向发射机报告,以便由发射机实现改进后的比特分配。这种由接收机反馈给发射机的信息是通过一个可靠的周期性的低速控制信道进行的,频率越高,衰减越大,则子信道就分配较少比特,传送较少的信息,哪个子信道的信噪比(S/N)越高,则分配越多的比特,反之则越少,甚至被关闭。

  (2)SDMT

  SDMT是由DMT和TDD(也称乒乓传输)组成。在使用VDSL宽带接入技术时,电缆中的线路均被锁定于同一个网络时钟上(即同一电缆中的所有线路在同一时间上“乒”和“乓”),SDMT系统支持在不同时间周期的用同一频段的上行和下行传输。SDMT为VDSL提供了许多好处:首先,下行和上行码率之比可以灵活;其次,减少了数字信号处理的复杂性。

  2.3 S-OFDM调制

  目前,数字电视地面广播(DTTB)已达到可实现阶段,世界上已经公布的DTTB传输标准主要有3种:ATSC,DVB-T,ISDB-T,基于对这3个地面数字电视系统的深入研究,借鉴并吸收了这些年来国际国内数字电视技术方面的经验和教训,清华大学提出了一个基于TDS-OFDM调制技术的地面数字电视广播传输协议——地面数字多媒体电视广播(Terrestrial Digital Multimedia Television Broadcasting,DMB-T)传输协议。

  该系统的核心就是采用了时域同步正交频分复用(Time Domain Synchronous Orthogonal FrequencyDivisionMultiplex,IDS-OFDM)调制技术,其频谱利用率可高达4 bit/s/Hz。因此,每个频道有效净荷的信息传输码率在8 MHz的带宽下可高达33 MB/s。其物理信道帧结构如图1所示。

  图1下行传输协议的分级帧结构

  帧结构是分级的,一个基本帧结构称为一个信号帧。帧群定义为255个信号帧,其第一帧定义为帧群头。帧群中的信号帧有唯一的帧号,标号从0~254,信号帧号被编码到当前信号帧的帧同步序列中。超帧定义为一组帧群,帧结构的顶层称为超帧群。超帧被编号,从0到最大帧群号。超帧号(SFN)与超帧群号(SFGN)一起被编码到超帧的第一个帧群头中。SFGN被定义为超帧群发送的日历日期,超帧群以一个自然日为周期进行周期性重复,它被编码为下行线路超帧群中一个超帧的第一个帧群头中的前两个字节。在北京时间00∶00∶00AM,物理信道帧结构被复位并开始一个新的超帧群。一个信号帧由两部分组成:帧同步和帧体。帧同步和帧体的基带符号率相同,规定惟7.56 MB/s。帧同步信号采用沃尔什编码的随机序列,以实现多基站识别。帧同步包含前同步、帧同步序列和后同步。对于一个信号帧群中的不同的信号帧,有不同的帧同步信号,所以,帧同步能作为一个特殊信号帧的帧同步特征而用于识别。帧同步采用BPSK调制以得到稳定的同步。

  由于采用了IDS-OFDM调制技术,DMB-T协议不仅适用于传统的电视节目(视频码流)广播,也适用于提供其他多媒体信息传输服务,特点是:与现有电视广播的传输频率兼容,满足HDTV广播要求的高数据码率,邻近的电视台可以使用相同的频率广播相同的内容(支持蜂窝单频网),卓越的移动接收能力使人们在乘坐汽车和火车时能得到可靠及时的多媒体信息服务,在各种条件和环境下纠错接收能力强,建网成本和运营成本低等。

  另外,DMB-T技术支持“移动接收”使它成为理想的无线解决方案;支持“突发数据”使它能够处理短数据或消息;支持“蜂窝网”使它能够扩展,满足未来更大的容量需求。

关键字:移相  幅度  效率  通信  误码  频谱  振幅  二进制  载波 引用地址:试论多进制数字调制技术及其应用

上一篇:什么是QAM ?
下一篇:一体机太贵 机顶盒难用

推荐阅读最新更新时间:2024-05-03 19:18

基于平台的变速电动机方案开发
从家庭中常用的冰箱、洗衣机、洗碗机到工厂及加工厂的水泵和风扇、以及办公室里的空调系统,中小型电机都需要得到有效的控制。在商业、工业和家庭环境中,我们对电动机的依赖无处不在,据估计电动机消耗的电能占据了全球电能消耗的50%以上。 然而,问题在于绝大部分电动机都不是非常有效,就像感应电动机、交直流两用电动机和不经济的电动机械驱动器那样效率低下。考虑到环保、立法和商业,以及结合基于电动机设备消耗大量的能源,对于工程师来说很有必要找出改善电机效率的方法。 图1:IRS2136D系列产品功能方块图。 以冰箱为例,它大约占家用电能的15%,其中大部分电能被浪费在将热量泵出冰箱的过程中。传统的冰箱所配备的单相感应电动机
[电源管理]
提高数据计算效率 华为公开了光计算芯片相关专利
近日,华为新增多项专利信息,其中包括了“光计算芯片、系统及数据处理技术”专利,专利公开日为2021年2月2日。 图片来源:企查查 据悉,该技术能够在芯片上实现光计算,提高数据计算效率。 专利摘要显示,该专利是一种光计算芯片、系统及数据处理技术。所述光计算芯片包括光源阵列、第一凹面镜和调制器阵列。所述光源阵列位于所述第一凹面镜的物面焦平面上。所述调制器阵列位于所述第一凹面镜的像面焦平面上。所述光源阵列用于根据第一数据生成第一光信号。所述第一凹面镜用于根据所述第一光信号输出第一反射光信号。所述调制器阵列用于接收所述第一反射光信号,根据所述第一反射光信号获得第一频谱面分布数据,并将所述第一频谱面分布数据调制在所述调制器阵列上。 近日
[手机便携]
提高数据计算<font color='red'>效率</font> 华为公开了光计算芯片相关专利
通信EXFO 迎来下一代现场测试平台
   EXFO日前宣布推出面向光网络的高端安装和维护应用的便携式FTB-500测试平台。该平台基于PC,适用于Windows-XP环境,是10多年市场导向型创新的最终结果,是EXFO测试专家为网络专家设计的理想平台。智慧的碰撞造就了在性能、灵活性和扩展性方面都无可比拟的模块化平台设计成果。   FTB-500平台能够真真切切地在鉴定下一代高速网络方面提供不受限制的功能。EXFO丰富的产品系列涵盖了从市场领先的光学测试模块到高度创新的传输和数据通信测试解决方案的各个方面,网络专业人士能便利地对其中多达8种的测试模块进行组合与搭配。   FTB-500平台还支持非常先进的测试应用,能够帮助网络专业人士进行目标明确的光纤设备升级
[测试测量]
恩智浦半导体在华打造“下一代体验”
重新命名与清华大学共同成立的联合实验室,履行对“中国创造”的长期承诺 中国,北京,2007 年7月23日 –由飞利浦成立的独立半导体公司恩智浦半导体(NXP Semiconductors)今天宣布,与清华大学信息科学技术学院共同成立的研究中心运营一年多以来,已经在无线通信、多媒体处理及汽车应用等领域取得重大进展。随着恩智浦生动体验“芯”科技(Vibrant Media Technology)所带来的“下一代体验”日益受到市场青睐,恩智浦和清华大学决定将此研究中心更名为“生动体验实验室(Next Experience Lab)”。这有力印证了恩智浦大力培养本土人才,增加研发项目以推动本土创新,帮助中国实现从“中国制造”到“中国创
[焦点新闻]
秒杀WiFi的可见光通信来啦
     用灯光上网!回顾最早的可见光通信   试想一下,在一个有灯光照耀的地方,你手上的移动终端不到0.2秒就能下载(传输)完成一部高清电影(1GB),同时还能可享受打电话、上网等各种常见 网络服务,那么你还会想念WiFi或4G网络吗?答案显然是不会!不过也一定有朋友会问,这么“夸张”通信技术真的存在吗?答案当然是肯定的!   近日,中国“可见光通信系统关键技术研究”获得重大突破——可见光通信的实时通信速率已经提高至50Gbps!   可见光通信(Visible Light Communication,VLC)呢? 其实就是利用可见光波段的光作为信息载体,无需光纤等有线信道的传输介质,在空气中直接传输光信号的通信方式。
[手机便携]
BabyLIN的三种编程方式教你轻松驾驭总线通信
概述 BabyLIN对LIN总线进行了专业的集成,特殊型号的设备还可以兼容CAN总线使用,对于车载网络的测试有着独特的优势。在二次开发的领域里,BabyLIN又有着简单高效的方式,即使不懂热门的编程语言,也可以通过多种方式对BabyLIN进行开发控制。 BabyLIN主要有三种编程方式进行使用: 1、SDF文件宏命令 常见的LIN总线通信测试设备都是处理LDF文件的,而LDF文件是LIN总线的通信信号数据库,虽然定义好了所有的LIN总线报文和信号,但是在实际测试中,通过单独的报文信号收发是十分不方便的。 为解决LDF局限性的问题,虹科BabyLIN系列设备对LDF文件进行更新,升级为可编程的SDF文件,在SDF文件中,
[嵌入式]
BabyLIN的三种编程方式教你轻松驾驭总线<font color='red'>通信</font>
TOP243制作的3V/4A高效率开关稳压电源
这个低压大电流宽输入电压开关电源传为智能快速电池充电机而配套,它可为四节AA电池每节提供1A的最大充电电流。该电源采用了工作稳定可靠,外围元件极少,基本无须调试的TOP系列专用开关电源电路TOP243Y。 图1是TOP243Y的基本应用电路,TOP243Y在密封的的环境中使用,在85—265V的交流电压下,可输出15W左右的最大功率,而在开放的条件使用输出功率可达30W,我们这里使用的超小型的电源适配器,工作环境是完全密封的,所以选用TOP243是合适的,但在塑壳内也必须给TOP243加上足够大面积的铝质散热器。 图2是TOP243Y的内部电路框图。下面我们对这个电源的工作原理简述如下。 交流电AC(范围为120V—2
[电源管理]
TOP243制作的3V/4A高<font color='red'>效率</font>开关稳压电源
基于Modbus协议和PLC器件实现分布式系统通信网络的兼容性设计
  一、引 言   现代工业的迅速发展,不断促进着自控技术及设备创新的日新月异。当前,DCS、IPC、PLC及智能仪表已广泛应用到工厂现场生产控制系统当中,并发展到由上述设备相互协同、共同面向整个生产过程的分布式工业自动控制系统。在此系统中,现场通信技术堪称关键。但由于开始没有统一的通信协议标准,各厂商自控产品通信协议各自为政,通信网络各成体系,造成不同厂家的自控设备网络连接困难甚至不能连接,给分布式控制系统的灵活应用造成了不便。一些公司为适应市场,纷纷将各自的协议标准公开化,可无偿使用。经过多年发展,一些通信协议如Modicon公司的Modbus通信协议因其兼容性、易用性的优势,在工业领域得到了广泛应用,已成为一种通用的工业通信
[嵌入式]
基于Modbus协议和PLC器件实现分布式系统<font color='red'>通信</font>网络的兼容性设计
小广播
最新家用电子文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 电视相关 白色家电 数字家庭 PC互联网 数码影像 维修拆解 综合资讯 其他技术 论坛

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved