全双工系统中收发隔离的分析与实现

发布者:快乐旅人最新更新时间:2011-02-11 来源: 维库网关键字:全双工  收发隔离 手机看文章 扫描二维码
随时随地手机看文章

  1  引  言

  对于全双工接收机, 收发隔离是系统工作时的一个重要指标。如果系统的收发隔离解决不好, 会造成发射时接收通道无法正常工作, 还有可能会引起接收通道的自激, 若是在大功率条件下, 甚至会造成接收通道前端放大器的损坏。因此, 有必要对系统中收发隔离的理论和实现方法进行研究。

  全双工系统的收发隔离主要与设备前端天线的隔离度和射频模块中接收和发射通道的设计相关。

  从理论上来看, 大多数的研究集中于同频全双工系统的收发隔离, 并提出如自适应对消技术的方法来提高收发隔离; 从工程实际上来看, 对于像移动电话这样的设备, 可以通过收发开关的转换以半双工的工作方式来实现系统工作时的收发隔离。目前对非同频全双工系统研究较少, 这主要是因为接收不同频时可以通过加滤波器来增加隔离, 保证系统正常工作; 但在导航通信机中, 由于系统发射功率很大, 而接收信号功率较小, 在信号功率相差很大的情况, 只通过加滤波器不一定能满足系统收发隔离的要求, 此时还要做一些相应的设计。

  本设计即从非同频全双工系统中所面临的收发隔离出发, 首先一般性的分析了全双工系统中收发隔离的理论与方法, 接着以非同频全双工系统为主,为系统的射频模块建立模型, 并结合该模型分析实现收发隔离的要求, 并提出相应的设计原则, 最后以北斗一代!手持机项目为背景, 设计和实现了一个接收机射频模块, 并将该射频模块接入到整机中进行暗室测试, 测试结果说明所设计模块的收发隔离性能良好, 验证了所做的理论分析和提出的设计原则。

  2  理论分析

  收发隔离问题常见于全双工系统中, 如电子干扰机、雷达、卫星通信机等设备。按设备工作时接收和发射频率相同和不同可以分为同频接收机和不同频接收机。一般的电子干扰机、雷达为同频全双工接收机, 而卫星通信机为非同频全双工接收机。

  对于同频全双工接收机, 由于发射和接收为相同的频率, 发射泄露造成的干扰信号与接收信号的频率相同, 无法通过滤波的方式来消除。在这种系统中,常见的方法是采用对消技术来消除干扰信号对正常接收信号的影响。图1所示为同频全双工接收机中信号对消方法的原理图。其中SR ( t ), IF ( t ),SC ( t)分别为天线间耦合信号, 所要接收信号和接收机产生的对消信号。图1中各个信号可以表示为:


  当SR ( t ) 和SC ( t ) 等幅且相位相差90°或者270°时, 两者相互抵消, 则SOUT ( t ) = IF ( t)。

  对于非同频全双工系统, 收发隔离主要由系统的射频前端来实现。由于系统的发射和接收采用不同的频率, 则可以通过滤波的方式尽量消除发射时对接收信号的影响, 但仅通过加滤波器并不一定能实现收发隔离, 还需要有其它的相应设计。图2为提出的非同频全双工接收机射频模块的原理图。


图1  射频模块原理图


图2  射频模块原理图。

  假定图2中电路的各个参数如下: 接收机的接收频率为fR, 发射频率为fT; 接收和发射天线在fT和fR 频点上的隔离分别为IT 和IR; 功放输出信号功率为PT, 在fR 频段上产生的噪声功率为P n; 低噪放入口处的正常噪声功率为P n0, 其输入1dB 压缩点功率为P1dB _LN A, 增益为GLNA; 接收混频器的输入1dB压缩点功率为P1dB _mixe r; 考虑滤波器在fR 频点上的插损很小而近似忽略, 只计算它在fT 频点上的抑制为ILF; 考虑到隔离器在fT 频率上的插损很小而近似忽略, 只计算它在fR 频点上的抑制为ILI。结合该电路, 从实现收发隔离的角度来看, 电路设计中要遵守以下两条原则。

  原则1: 功放发射时耦合到接收通道中fT 频率上的信号功率不使接收通道饱和, 即:


  原则2: 功放工作时耦合到接收通道中fR 频率上的噪声功率不影响正常信号接收。一般情况下,当耦合的噪声功率比正常接收的噪声功率小10倍时, 约使输入信噪比降低0. 4dB, 即认为耦合的噪声功率不影响正常信号的接收。用公式表达为:



  3  设计实例

  本设计以 北斗一号!卫星导航系统中手持用户机的收发隔离为例来分析。由于我国的“北斗一代”卫星导航系统采用了双星有源导航定位体制, 用户在解算的过程中不仅接收卫星转发的询问信号, 还主动向卫星发射定位申请信号。 北斗一号!的体制决定了手持型用户机必须采用非同频全双工的工作模式。

  在“北斗一号”卫星导航系统中, 卫星均为地面静止卫星( GEO ) , 下行链路的频率为fR =2491. 75MH z, 到达地面最小功率约为PR =- 127. 6dBm, 上行链路的频率为fT = 1615. 68MH z,为了保证卫星收到用户发射的信号, 设备的发射功率不应小于PT = + 40dBm。将接收机的射频模块分为接收通道和发射通道两个部分, 具体设计如下。

  3. 1  接收通道的设计

  目前 北斗一代!导航业界内手持机天线在fR和fT 频率上的隔离度均可以做到10dB 左右。以功放的发射功率PT = + 40dBm 来算, 则耦合到低噪放入口的发射信号功率约为+ 30dBm。为使低噪放不饱和或稳定工作必须在低噪放和接收天线之间插入滤波器来抑制fT 频率上的泄漏功率。由级联系统的噪声系统定义[ 4] 可知, 插入的滤波器在fR 频段上的插损必须非常小而不至于显着的恶化接收通道的噪声系数。另外, 因为导航信号为弱信号, 而单级的射频放大芯片的增益有限, 所以实际中低噪放由几级芯片级联。为保障低噪放中各级芯片均不饱和,不仅要在低噪放入口处加滤波器, 在各级联芯片之间也应有滤波器。图3所示为接收通道的电路。


图3  接收通道原理示意图。


图4  发射通道原理示意图。

  图3中滤波器1 和滤波器2在1616MH z上抑制分别约为47dB 和60dB 左右, 放大器1的增益约为17. 5dB, 输入1dB压缩点功率约为+ 3. 5dBm, 放大器2和放大器3相同, 它们的增益约为17dB, 1dB饱和输入功率约为- 11dBm, 接收混频芯片的1dB饱和输入功率约为- 8dBm。通过计算, P in1 = PT -IT - ILF = 40 - 10 - 47 = - 17dBm, Pin2 = P in 1 +GATF 34143 - 60= - 17+ 17. 5 - 60 = - 59. 5dBm, 在这样的输入功率下足以保证各级放大器和混频器均不饱和, 满足原则1中要求。

  3. 2  发射通道的设计

  出于成本的考虑, 手持机功放模块中所选择的功放芯片的饱和输出功率必然十分接近所要求的输出功率PT = + 40dBm。由于功放的发射功率接近其饱和输出功率, 功放很难完全工作在线性区域, 所以功放工作时不仅在fT 频段上有功率输出, 在fR 频段上也会相应的有噪声功率输出。若耦合到接收天线中的噪声功率Pn与天线入口处的正常卫星信号噪声功率Pn0相当, 将影响信号的接收。由于功放输出的带外噪声功率很大程度上取决于芯片本身, 一旦选定了功放芯片, 它的输出噪声功率就相对确定。

  为了控制功放输出的fR 频段上的噪声功率, 有必要在功放和发射天线之间加一个隔离器, 增加对fR 频段信号的抑制。

  如图4为发射通道所采用的电路模型。为了满足原则2中要求, 在末级放大器后接入隔离器来抑制带外的噪声功率。隔离器在2492MH z处的抑制有20dB, 另外ADS 仿真可知, 最后一级芯片在2492MH z处的增益约为- 11dB。实测发现, 在这样的电路设计下, 可以满足原则2的要求, 不影响接收通道的正常工作。

  4  实测结果

  将所设计的射频模块接入整机进行暗室测试, 调整接收机天线入口处的信号功率强度, 在接收机接收到的信号波束强度为47dBH z左右时, 进行连续定位测试。功放发射时, 信号接收波束强度基本无变化; 再降低接收机天线入口处的信号功率强度, 使接收机接收到的信号波束强度在门限电平44dBH z左右, 再进行连续定位测试, 发现功放发射时, 手持机无失锁现象, 只是接收信号误码率略有增加。

  5  结  论

  总结了全双工系统中收发隔离的理论, 着重分析了非同频全双工系统的特点, 并给合实际工程需要, 提出了一些设计原则。在 北斗一代!导航系统中手持式接收机的研发背景下, 由理论分析和所提原则, 制作了射频模块。经过整机测试发现, 该模块实现了手持机的收发隔离, 满足手持机全双工工作的要求, 证明了所提原则。目前该模块已成功应用于某产品中。

关键字:全双工  收发隔离 引用地址:全双工系统中收发隔离的分析与实现

上一篇:缩短BCH 编码应用于无线传感网络的能效分析
下一篇:基于微处理器的紧耦合组合导航系统设计

推荐阅读最新更新时间:2024-05-07 16:13

恩智浦推出业内首款汽车级隔离式CAN收发
恩智浦半导体(纳斯达克股票代码:NXPI)推出了一款集成电隔离技术的高速CAN(控制器区域网络)收发器TJA1052i,这是同类产品中第一款符合ISO11898-2标准,且达到AEC_Q100汽车级标准的集成式隔离CAN收发器。 TJA1052i非常适合应用于需要高、低电压并存的CAN网络 (例如在电动车和混合动力车中)。为了确保安全,在这些应用中需要在CAN网络设计中加入电隔离器。TJA1052i集成了隔离器和CAN收发器,使之能大大简化高低电压之间的隔离设计工作。 TJA1052i提供电击、过压、地偏移和反向电流保护,并能显著提升嘈杂电磁环境下信号的完整性。 集成CAN收发器及电容式隔离器于一个封装中的全新解决方案能够
[汽车电子]
基于STM32实现串口的两个分案解析
首先总结一下串口232,422,485 串口232:可双向传输,全双工,最大速率20Kbps,负逻辑电平,-15V~-3V逻辑“1”,+3V~+15V逻辑“0”。 串口422:可双向传输,4线全双工,2线单工。 串口485:可双向传输,4线全双工,2线单工,最大速率10Mb/s,差分信号,发送端:+2V~+6V逻辑“1”,-2V~-6V逻辑“0”,接收端:+200mV逻辑“1”,-200mV逻辑“0”。 对于串口的实现有以两个方案: 方案一,和原子的《例说STM32》一样,首先接收,然后处理,没有消息验证处理,这样就会出现消息覆盖,消息出错后死机,无法明确区分命令,无法及时应答握手信号。方案二,借鉴uC/OSII的消息队列,进
[单片机]
基于STM32实现串口的两个分案解析
实用四线制全双工RS-485中继器
1.引言 理论上RS-485的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb/s.但其平衡双绞线的传输距离与传输速率成反比,只有在100kb/s速率以下,才可能达到最大传输距离。要获得最高速率传输只能在很短的传输距离下连接。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s.想要保证较高传输速率,又有较远的传输距离,采用中继器是一个便捷的方法。中继器可以将较长的传输线分隔成两段,从而减低传输线的欧姆阻抗、线间电容、集肤效应等引起的信号畸变,从而保证在较高传输速率下,增加传输距离。 RS-485有两线制和四线制两种接线方式,采用二线方式,二线制可实现真正的多点双向通信。而采用四线连接时,只能实现点对多的
[电源管理]
实用四线制<font color='red'>全双工</font>RS-485中继器
低 EMI、隔离型 RS485 µModule 收发器 可满足 IEC60601-1 严苛要求
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2016 年 11 月 15 日 – 凌力尔特公司 (Linear Technology Corporation) 推出针对大的地至地差分电压之保护作用的隔离型 RS485 µModule® (微型模块) 收发器LTM2885。许多工业、公共设施、医疗、军事和本质安全应用需要具有更大的电压和空间隔离度之隔离组件以保障人身安全。LTM2885 在逻辑电平接口和收发器总线引脚之间提供了 6500VRMS 的增强型隔离,远远超过了 IEC 60747 基本和增强型隔离标准的要求。凭借大于 14mm 的爬电和空间距离以及一个大于 0.2mm 的绝缘穿透距离 (DTI),LTM288
[模拟电子]
低 EMI、<font color='red'>隔离</font>型 RS485 µModule <font color='red'>收发</font>器 可满足 IEC60601-1 严苛要求
恩智浦推出业内首款汽车级隔离式CAN收发
中国上海,2013年5月3日-- 作为车载网络领域的领跑者,恩智浦半导体(纳斯达克股票代码:NXPI)推出了一款集成电隔离技术的高速CAN(控制器区域网络)收发器TJA1052i,这是同类产品中第一款符合ISO11898-2标准,且达到AEC_Q100汽车级标准的集成式隔离CAN收发器。 TJA1052i非常适合应用于需要高、低电压并存的CAN网络 (例如在电动车和混合动力车中)。为了确保安全,在这些应用中需要在CAN网络设计中加入电隔离器。TJA1052i集成了隔离器和CAN收发器,使之能大大简化高低电压之间的隔离设计工作。 TJA1052i提供电击、过压、地偏移和反向电流保护,并能显著提升嘈杂电磁环境下信号的完整性。 集成
[汽车电子]
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved