下一代LTE基站发射机的RF IC集成设计

发布者:asdfrewqpp最新更新时间:2011-03-12 来源: 与非网 关键字:LTE基站  发射机  RF  IC集成设计 手机看文章 扫描二维码
随时随地手机看文章

    从3G升级到LTE-Advance,对下一代移动通信基础设施的设备和器件供应商提出了诸多挑战。下一代无线设备要求支持更宽的信号带宽、更复杂的调制方式,以便在全球范围内部署的各种运行频段上都能获得更高的数据速率。因此,噪声、信号线性度、功耗和外形尺寸等性能都非常关键,对这些性能的要求也更苛刻。此外,元器件供应商同样被要求降低元器件的成本和尺寸以支持更高密度的应用。

    射频芯片(RF IC)设计师面临的挑战也将日益艰巨,因为集成方案必须具有或超过分立元器件实现的性能。在采用分立元器件实现方案时,系统设计师可以分别采取不同技术(如GaAs、Si Bipolar或CMOS)进行最优化的设计。但对那些想通过单一工艺技术提供更高集成度的 RF IC设计师来说,选择最佳工艺技术所面临的最大挑战是灵活性。

    在基站的发送器内,模拟I/Q调制器是决定发送信号路径的本底噪声和线性度的关键RF IC器件,不允许为降低尺寸、功耗或成本而牺牲性能。

    幸运的是,SiGe BiCMOS工艺技术可实现更高集成度而又不牺牲性能。这些工艺通常能提供多种速度类别的SiGe NPN晶体管,在某些情况下还能提供一倍(更多时候是两倍)于CMOS晶体管特征尺寸的互补高性能PNP晶体管。在此基础上,还能增加MIM电容、薄膜电阻以及更重要的多层厚铜和铝金属膜。这些特性能够帮助设计师在单芯片上实现多个高性能的功能模块,从而大大降低功耗、缩小体积,并保持很高的性能。

    发射机板级设计的一个重要方面是用于各个上变频和下变频转换电路的本振时钟的合成和分配。基站本振时钟的分配必须保持到PCB所有远距离位置的相位一致性,而且必须具有低的带内噪声、宽带噪声以及总杂散噪声。混频器性能与驱动它的本振性能一样,因此高质量的本振是提高发射机总体性能的关键。此外,本振信号上很小的相位噪声或杂散分量都有可能在模拟信号路径中引入足够大的能量,导致发射机不能满足一些主要的蜂窝通信标准(MC-GSM、WCDMA、LTE、WiMAX)规定的杂散干扰指标。这些标准要求的本振频率范围为约500MHz至接近4GHz,这意味着用于本振时钟分配的版图设计必须十分小心。从本振产生到最后终结的走线长度应尽可能短,但如果本振合成器必须馈送到多个不同器件时,这个要求就很难满足。一种解决方案是将公共的低频参考时钟馈送到每个本振附近的独立PLL合成器,但这会占用很大的PCB面积。

    通过集成先进的小数N分频PLL和VCO,ADRF670x系列集成式调制器解决了上述许多问题。使用硅锗技术能让内置VCO的正交调制器和混频器的动态范围达到业界领先水平,并且具有竞争优势的性能,而体积显著小于外接VCO/PLL解决方案。VCO在上层厚金属层中实现,可将高Q值的片上电感用作LC电路的一部分。VCO电容是用MOS开关型MIM电容组成的,因此允许VCO在宽频范围内切换频率,并具有较低的相位噪声。每次编程PLL频率时都会自动调整频带,因而能提供独立和可靠的解决方案。在初始化完成后,频带大小的选择要确保器件能在整个温度范围内正常工作。厚金属层还用来集成具有出色反射损耗的输出平衡不平衡转换器(Balun)。ADRF670x系列由4个频率参数互相重叠的成员组成,覆盖从400MHz至3GHz的频率范围和频带,每个成员都是根据1dB和3dB通带上的输出Balun带宽定义的。

    ADRF670x和ADRF660x系列小数N分频PLL设计是低相位噪声的3G和4G应用的理想之选。这些新的蜂窝标准具有密集的信号星座,要求越来越低的本振相位噪声以获得足够的性能。传统的PLL合成器设计使用“整数N”架构,其输出频率是鉴相器频率的整数倍。为提供较小的频率步进,整数倍增因子必须非常大。大量本振相位噪声源于参考路径,并被PLL频率倍增因子所放大,这将导致PLL 输出端产生很高的带内噪声。小数N分频PLL允许输出频率有较小的步进,同时保持低的总倍频值,因而与整数N分频PLL相比,可以降低相位噪声放大值。

    邻信道功率比(ACPR)是判断发射信号有多少泄漏进相邻频带的一个指标。像WCDMA等3G标准对带外发送功率有严格限制。ADRF6702的ACPR指标见图3。调制器提供高度线性的输出功率和低噪声,因此在-6dBm输出点有优于-76dB的ACPR值,这有助于减少调制器后面的增益级数,并使末端功放级电路前面的动态范围达到最大。

    ADRF670x系列器件集成了3个LDO电路,可在单5V电源下工作,从而进一步简化了用户应用、减小了成本和电路板面积。LDO用于向VCO、电荷泵以及PLL增量累加调制器提供稳定电源,+5V电源可直接用于I-Q调制器,以使输出功率最大。

    在高密度应用中,ADL670x可以利用PLL完成本振的内部合成,而其它器件可以禁用它们的PLL,并使用来自某个主器件的公共本振。

    ADRF670x系列产品设计用于简化用户接口,方便与ADI最新的发送数模转换器AD9122和GaAs放大器(如ADL5320)的连接。(ADL5320是一个0.25瓦高线性度放大器,能够将0dBm以上功率驱动进最末级功放电路。)这三个尺寸紧凑的IC构成了一个完整的有源IC器件组合,是所有下一代多载频蜂窝无线平台的理想之选。

关键字:LTE基站  发射机  RF  IC集成设计 引用地址:下一代LTE基站发射机的RF IC集成设计

上一篇:阿朗发布超小型移动基站 有助于无线网络扩容
下一篇:3G基站现场无线测试指南

推荐阅读最新更新时间:2024-05-07 16:20

VHF发射机的主要电路设计
摘要:VHF发射机是监控终端中的关键设备,也是典型的数字通信射频无线收发设备。文中详细阐述了VHF发射机的指标、链路以及模块电路工作原理,给出了栽波频率为156.025~162.025 MHz的VHF发射机各模块电路的设计方法。 关键字:VHF发射机;VCO;混频;功放;滤波器 0 引言     超外差发射接收机的主要优点是可在比较低的中频频段实现相对带宽比较窄而矩形系数较高的中频滤波器,此类中频滤波器可以提高接收机的选择性,而且可以从中频级获得较大的增益,从而降低射频级实现高增益的难度。当射频信号频率上升到微波甚至毫米波时,即可采用二次变频方法,以进一步降低滤波器的实现难度,保证接收机的选择性。在该VHF发射接收机中,信号的频率
[电源管理]
VHF<font color='red'>发射机</font>的主要电路<font color='red'>设计</font>
射频衰落模拟器在信号衰落测试中的应用
引言 决定基站发射机与移动接收机之间的通信质量的关键因素是信号的传播信道。信号在空中传播期间,会存在衰落现象。这意味着如楼宇、山坡或者树木等障碍物都有可能吸收或反射信号,对其幅度和相位产生明显影响。由于反射、衍谢和本地散射作用,在基站和接收机之间可能形成多个信号传输路径 (见图1)。这种所谓的多径传播现象,会导致接收机接收到同一信号的不同副本,副本各自的传输路径长度不同、抵达接收机的时间也不同,且它们的幅值和相位也各异。对于移动式接收机,还可能存在额外的挑战,例如最大和最小信号强度以及多普勒频移等。 图1 传输过程中的信号衰落现象 众所周知,对于诸如移动电话等无线设备应该在真实条件下进行测试,以确保它们的工作性能。为此,
[测试测量]
<font color='red'>射频</font>衰落模拟器在信号衰落测试中的应用
采用555集成电路的简易光电控制器电路设计
  该光电控制器以555时基集成电路为核心,控制方式比较简单,使用可靠、寿命长,是一种价格低、体积小、便于自制的光电控制开关电路。可用于工业生产和家用电器等的控制。    电路工作原理: 无光照射时,光敏电阻RG的阻值很大(1MΩ以上),555时基集成电路的2脚、6脚电压约为电源电压的1/2(6V),3脚输出低电平,KA线圈无电,继电器释放。当有光线照射到光敏电阻RG上时,RG阻值会大幅下降 (小于10KΩ),555的2脚、6图18采用555集成电路的简易光电控制器电路图脚电压降到电源电压的1/3(4V)以下, 3脚输出高电平,KA线圈得电,继电器吸合,即使光照消失,KA仍保持吸合状态。其后,如再有光线照射到光敏电阻RG上,则电容
[电源管理]
采用555<font color='red'>集成电路</font>的简易光电控制器电路<font color='red'>设计</font>
高达67 GHz的射频性能,pSemi宣布业界领先的5G毫米波开关实现量产
SP4T开关产品组合支持超宽带和高频应用 圣迭戈 —— 2022年10月10日,村田旗下公司、专注于半导体集成技术的pSemi® Corporation宣布,全新SP4T开关的生产准备工作已全面就绪,这款产品可用于 高达67 GHz 的超宽带和高频应用。 这款业界首款SP4T开关既紧凑又节能,旨在增强5G毫米波(mmWave)系统和短程连接性。 PE42545是毫米波开关系列产品之一,可提供一流的低插入损耗、高线性度、极短开关切换时间、高功率承受能力及支持到高达67 GHz的频率范围 ,可助力设计人员在测试和测量、无线基础设施、非地面网络和点对点通信应用等方面简化设计布局,提高系统整体效率。 pSemi销售和营销副总裁
[测试测量]
高达67 GHz的<font color='red'>射频</font>性能,pSemi宣布业界领先的5G毫米波开关实现量产
可满足高性能数字接收机动态性能要求的ADC和射频器件
摘要:针对数字式接收机对其所采用器件的动态性能要求,给出了一个欠采样接收机的结构图。同时给出了满足该高性能数字接收机动态性能要求的新型器件及主要性能参数。 关键词:数字接收机;动态性能;射频器件;ADC;MAXIM 许多数字接收机都对其选用的高性能ADC及模拟器件的动态性能具有较高要求。如蜂窝基站数字接收机就要求有足够的动态范围,以便处理较大的干扰信号,从而把电平较低的有用信号解调出来。通过Maxim公司的15位65Msps模数转换器MAX1418或12位65Msps模数转换器 MAX1211配以2GHz 的MAX9993或900MHz的MAX9982集成混频器,即可为接收机的两级关键电路提供出色的动态特性,此外,Maxim公
[模拟电子]
如何捕获瞬变、突发的RF干扰源?普源频谱分析仪来帮忙!
由于无线电频谱资源的有限及不可再生,而用户数量及无线电应用的急剧增加,当前的RF频谱正在变得越来越拥挤,越来越繁忙。如何更加高效地利用有限的RF频谱资源,是当前无线电从业者所要面临的首要问题。 同时,产品设计及测试难度也因此加剧。工程师们不仅要保证自己的产品符合相关法规的规范,还需要时刻注意其他RF干扰源对自身产品的影响。如何捕获到这些偶发的RF干扰源,并全面地了解信号频率、功率、概率、时间等多维度信息,是当前RF工程师面临的重要挑战。 相对于传统射频接收机或频谱分析仪,实时频谱分析仪为无线电监测和频谱管理应用提供了许多卓越的功能。利用实时频谱分析仪的实时分析特性,能够快速可靠的捕获到瞬变的、突发的、难以捉摸的复杂信号;可
[测试测量]
如何捕获瞬变、突发的<font color='red'>RF</font>干扰源?普源频谱分析仪来帮忙!
技术文章—采用LFCSP和法兰封装的RF放大器的热管理计算
简介 射频(RF)放大器可采用引脚架构芯片级封装(LFCSP)和法兰封装,通过成熟的回流焊工艺安装在印刷电路板(PCB)上。PCB不仅充当器件之间的电气互联连接,还是放大器排热的主要途径(利用封装底部的金属块)。 本应用笔记介绍热阻概念,并且提供一种技术,用于从裸片到采用LFCSP或法兰封装的典型RF放大器的散热器的热流动建模。 热概念回顾 热流 材料不同区域之间存在温度差时,热量从高温区流向低温区。这一过程与电流类似,电流经由电路,从高电势区域流向低电势区域。 热阻 所有材料都具有一定的导热性。热导率是衡量材料导热能力的标准。热导率值通常以瓦特每米开尔文(W/mK)或瓦特每英寸开尔文(W/inK
[半导体设计/制造]
技术文章—采用LFCSP和法兰封装的<font color='red'>RF</font>放大器的热管理计算
如何利用MAX2016测量RF增益?
该应用笔记讨论如何利用MAX2016 RF检测器实现超外差收发器的增益自动测量。本文比较了三种方案的性能和测量精度:增益测量和校准,具有失调修正的增益测量和具有失调、斜率修正的增益测量。 概述 作为一个双路RF功率检测器,MAX2016可以测量RF电路或复杂的超外差收发阵列的增益测量。该器件的一个关键特性是包含一个比较器,可以计算出两个功率电平的差值。即通过该电路可以很容易地实现简单的增益计算:增益 = POUTPUT - PINPUT = POUTA - POUTB = POUTD。但是,需要保证满足测量精度的要求。 根据应用情况,可能需要进行一次校准,以消除线路和耦合损耗以及器件之间的差异。以下概括了几种RF增益测
[测试测量]
如何利用MAX2016测量<font color='red'>RF</font>增益?
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved