基于RFID天线阻抗自动匹配技术的研究

发布者:RadiantExplorer最新更新时间:2011-03-16 来源: 维库网关键字:RFID  天线阻抗  自动匹配 手机看文章 扫描二维码
随时随地手机看文章
实验结果表明,在误差允许范围内,该系统自动将反射系数稳定在0点的周围,实现了RFID读写器功率的最佳传输。

  射频设别( Radio Frequency Identification,RFID)技术是从20世纪90年代兴起并逐步走向成熟的一项自动识别技术,通过射频耦合方式进行非接触双向通信,达到目标识别和数据交换的目的。

  RFID读写器在移动过程中,天线感应系数和阻抗的易变性造成读写器传输功率不必要的损耗和识别能力的下降。对于读写器天线阻抗的匹配,国外一些大公司的研究已经转向自动匹配方面,并有了比较成功的案例,而国内应用研究主要还集中于手动匹配方面。随着集成技术的发展,天线与读写器模块将向集成化发展,对于天线阻抗的匹配也将提出新的要求,而手动匹配是个耗时长且复杂的过程。

  因此,天线阻抗的自动匹配技术也将成为一种发展趋势。本文论证了天线阻抗的手动匹配方法,并在最大化应用集成元件的情况下,提出了一种新的适用于13. 56 MHz RFID读写器的天线阻抗自动匹配方法。

  1 阻抗手动匹配技术

  RFID系统使用外接天线与电子标签进行无线通信。天线夹具形状和尺寸的易变性使天线的输入阻抗易随外部环境的变化还发生微弱变化,导致传输功率的无用损耗。国际上RFID读写器天线标准阻抗一般都为50Ω, 本文设定阻抗匹配目标为(50 + j0)Ω。天线电路如图1所示,一般包含3个部分:

  (1)电磁兼容( EMC)滤波(L0 , C0 )电路;(2)包含可调谐电容C1、C2 的匹配电路;(3)天线。

  EMC滤波电路滤去了载波频率为13. 56 MHz阻抗变换时的谐波干扰。它有一个固定的谐振频率,这个频率是实际数据传输率和最高副载波频率的结合。如用曼切斯特编码时,传输的最高数据率为424 kbit/ s,频率为848 kHz,则谐振频率为14. 408MHz。


图1 天线电路框图

  在载波频率为13. 56 MHz时,通过在TX1 和TX2 两点测量天线线路的反射系数(即参数S11 )来手动调谐,直到天线电路的输入阻抗达到目标,计算方程如下:,又有ZL = 50W,可以看出,要使(S11 ) = 50Ω, S11必须为0。

  手动调谐即是交替不断调整电容C1、C2 的值,同时观察曲线变化,直到在所要求的频率点S11等于0。图2为某一天线电路在频率在10~20MHz之间变化时,其反射系数的变化曲线,其中,标记13. 56MHz的点, S11值近似为0,达到了匹配要求。


图2 经过手动匹配的天线smit

  2 阻抗自动匹配技术

  本文提出了一种自动匹配技术,其电路如图3所示,主要包含测量电路,匹配电路和控制电路。因为手工匹配方法耗时长,且需要良好的意识和丰富的经验来选择合适的电容,另外必须配备一些昂贵的设备,如网络分析仪或阻抗分析仪等。对于一些小公司来说,是不现实的。同时,一些手持式RF设备的发展使得手动匹配越来越不适应。对于这些移动设备,最理想的天线电路应该仅仅包含集成模块,且随着阻抗变化可以自动匹配。


图3 自动调谐匹配电路图

  2. 1 测试电路

  手工匹配采用的是阻抗分析仪或者网络分析仪,网络分析仪是用定向耦合器来测量天线电路的反射系数。但使用定向耦合器有几个主要的缺点,例如功率损耗大和很难嵌入到IC芯片。故而本文在电路中不使用耦合器,从图3看出,测量电路包含以下4部分。

  (1)测量电桥 用来测试天线的反射系数。主体部分为惠斯通电路,如图4所示。其电路中的直流电源用波形产生器替代,用来生成13. 56 MHz的正弦载波信号。其中电阻R1、R2、R3 都为50 Ω。

  根据基尔霍夫定律,得I1 - I2 + Id = 0, I3 - IZ - Id =0, I1 R1 + I2 R2 - I3 R3 = IZ Z,得Z = R2*R3/R1= 50Ω。

  电桥平衡即Vd = 0,当Vd 的大小和相位都为0时,天线阻抗调谐完成。Vd 计算公式为: Vd = |V2 -VZ | ,V2 = I2 R2 , VZ = IZ Z。

  (2)振幅测量电路 测量V2 和VZ 幅度, 并反馈到控制器。电路内部的整流器调整V2 和VZ 的幅度,消去输入信号的负半波,为了满足模数转换电路的输入范围要求,最后得到的信号经过低通滤波和放大电路传送到控制器。经过控制器模数转换后,比较两路信号的幅度,计算出Vd 的值。

  较两路信号的幅度,计算出Vd 的值。

  (3)相位测量电路 测量V2 和VZ 的相位, 并反馈到控制器。

  (4)振幅测量电路 测量V2 和VZ 的幅度,并反馈到控制器。


图4 测量电桥

  在设计中用一个已经过手动调谐的天线电路来验证测量电路。手动调谐电路以图1 的电路为基础,用微调电容器取代电容C1 和C2 ,将天线电路连接到测量电桥,调节微调电容器,使测量到信号的幅度和相位近似为0。然后在TX1、TX2 两点测量天线的反射系数。测量结果如图5所示,在频率为13.

  56MHz时,参数S11近似为0。这种检查流程已成功经过几种不同阻抗的RFID天线检测,在频率为13.

  56MHz时,测试天线的S11参数偏差都大体相同。

  这表明,这个偏差在测量电路中,是不可避免的,且不影响匹配。


图5 天线的smit图

  2. 2 匹配电路

  匹配电路是在微控器作用下来自动匹配天线的阻抗。在设计中,用其它可调电容电路将图1中电容C1 和C2 替换。通常有三种类型的替换方法:

  (1)微调电容器;(2)二极管电容;(3)电容阵列。

  机械微调电容器既不是集成的也不是电可控的,二极管电容不能充分隔离信号电压和控制电压。

  因此,最好的方法是用电容阵列,如图6所示,由半导体开关控制。将图1 中的C1、C2 用电容阵列取代。当电容值在1到50 pF之间时,开关选用了低电容DMOS开关。与普通开关不同, DMOS开关存在寄生效应。在断开期间,开关引脚之间、信号引脚与地之间都存在这寄生电容。这些电容使得电容阵列的调谐范围变窄,同样也使天线阻抗的调谐范围变窄。这个问题仍然有待于进一步的研究。


图6 电容阵列网络

  2. 3 控制器

  控制器处理测量电路测到得数据,计算Vd 的值,并进一步控制DMOS开关,达到阻抗的匹配,同时它内部集成的模数转换器可以使幅值和相位值数字化。在手动阻抗匹配中,是调整C1 和C2 使幅值和相位偏移尽可能的为0。用一个简单的算术来说明这个思路,当每一个被测对象被认为是二维平面里的一个点时,该点到零点的距离d可以用公式计算: d2 =A2 +φ2。幅值A 作为横坐标,相位偏移φ作为纵坐标。因此,控制器调谐算法就是要找到最短的路径d。在实际计算中, 用该算法扫描所有的电容组合,以得到一组电容值使d2 最小,用这组数据来匹配阻抗。

  3 功能验证

  设计完成后,用A,B两种阻抗不同的天线测试了完整的调谐系统,每种天线测试2 到3 轮不等。

  结果如图7所示,对于A, B两种天线的任何一种,都找到了最优C1 和C2 的组合。当频率为13. 56MHz时,两类天线的反射系数虽然与0点都有一定的偏差,但其偏差都在可接受范围之内。


 图7 自动匹配天线的smit图

  4 结论

  本文提出了一种适用于天线的阻抗自动匹配方法,基于此方法设计了集测量电路,匹配电路,控制电路于一体的集成RFID天线阻抗自动匹配虚拟系统。最后,通过实验测试,该系统模型运作良好,大体实现了匹配要求。然而,电容阵列的优化,匹配算法的改进等还有待进一步的研究。

关键字:RFID  天线阻抗  自动匹配 引用地址:基于RFID天线阻抗自动匹配技术的研究

上一篇:基于SiGe HBT的射频有源电感的设计
下一篇:超高频RFID空中接口协议研究

推荐阅读最新更新时间:2024-05-07 16:21

基于RFID的药品生产与质量控制信息系统设计方案
1 系统设计的目的 近年来,伴随着制造业的飞速发展,越来越多的企业在不同程度上开展了信息化建设,例如CAD/CAM等主流软件应用;虚拟制造、网络制造技术的铺开;电子商务、内部信息化管理的推广等等。目前,我国经济较发达地区(如珠三角)的工业化发展已步入成熟阶段,信息化也从初级阶段向中级阶段转变,两者存在着在更高水平、更深层次及更大范围上互相融合、互相促进的内在需求。 作为制造业重要领域的制药业,通过信息化手段提高管理与服务手段、降低成本正是成功的医药企业得以制胜的“名医良方”。作为典型的连续型生产制造医药企业有着自己独特的行业特征:如药品类别繁多、生产工艺流程复杂、质量管理要求十分严格、有效期须进行严格控制等等,因此,生产机制创新、
[嵌入式]
谈物联网技术在智能医疗领域的主要应用技术
应对人口结构高龄化所带来的长期照护需求,各国政府纷纷拟定政策,希望利用Wi-Fi、蓝牙、3G、GPS及RFID等物联网技术,架构起移动式医疗网络;且在远距照护等议题发酵下,也带动医疗产业结合物联网进入下一个崭新的应用阶段。 物联网技术在智能医疗领域的主要应用技术,主要在于物资管理可视化技术、医疗信息数字化技术、医疗过程数字化技术三个方面。 一、器材药物监控管理 借助RFID技术,开始广泛应用在医疗机构物资管理的可视化技术,可以实现医疗器械与药品的生产、配送、防伪、追溯,避免公共医疗安全问题,且实现药品追踪与设备追踪,可从科研、生产、流动到使用过程的全方位实时监控,有效提升医疗质量并降低管理成本。 根据世界卫生组织的
[医疗电子]
STM32(RFID)阶段三(触屏数字键盘)
在阶段二中,已经实现了RFID读写器与主控板的相互通信,发送和接收数据串。这是最核心的一部分。不过,之前金额的改变是固定100,现在开始任意数值的增减和任意数值初始化。这部分主要跟读写器的通信协议有关,不同的读写器可能不一样,但是代码思路都是差不多的。 为了实现任意数字的输入,首先要有一个键盘,在此,我用STM32TFTLCD触屏做了一个触摸键盘(电阻屏,竖屏)。要先引入touch.c ,24cxx.c,myiic.c文件。 触屏代码 #include delay.h #include sys.h #include lcd.h #include key.h #include touch.h in
[单片机]
无线局域网与RFID结合打造高效无线医疗
  作为市中心医院的主治医师,张医生再也不用带着病历单挨床查房诊断了。医院刚刚引进一套无线医疗应用平台,他只要随身携带一台笔记本,就可以在各个病区之间移动使用,想随时随地获知病人住院信息、病状、病史以及检查情况、检查结果等,按一键就可实现。   与张医生的最新改变相比,“无线医疗”这一名词的出现则相对显得平淡些。近年来,随着医院信息化的持续建设,如何让医生随时随地进行生命体征数据、医护数据的查询与录入,并且实现院内信息共享已经演变成各个信息化医院亟待解决的难题,而无线医疗也屡次被提上议程。   得益于众多进入中国并意在促进中国医疗信息化建设的国际企业,国内的医疗发展和信息化系统建设一直在不断地发展和完善着。无线医嘱的成功应用让
[医疗电子]
浅析射频标识RFID测试技术
  随着阅读器与标签价格的降低和全球市场的扩大,射频标识 RFID(以下简称RFID)的应用与日俱增。标签既可由阅读器供电(无源标签),也可以由标签的板上电源供电(半有源标签和有源标签)。由于亚微型无源 CMOS 标签的成本降低,库存和其他应用迅速增加。一些评估表明,随着无源标签的价格持续下降,几乎每一个售出产品的内部都将有一个 RFID 标签。由于无源 RFID 标签的重要性及其独特的工程实现的挑战性,本文将重点研究无源标签系统。   当接收到来自阅读器的 CW 信号时,无源标签对射频 RF(以下简称 RF)能量进行整流以生成保持标签工作所需的小部分能量,然后改变其天线的吸收特点以调制信号,并通过反向散射反射给阅读器 。RFID
[测试测量]
浅析射频标识<font color='red'>RFID</font>测试技术
RFID技术运用于物联网的局限性
本文在介绍物联网与RFID技术的基础上,总结了当前人们对RFID技术认识的误区及发展RFID亟待解决的问题,并着重针对有源RFID定位系统的搭建,总结工程实施中出现的问题。目的是为RFID技术开发人员、工程实施人员等相关人士提供参考。 近几年来,物联网IOT(Internet of Things)掀起了一股新的技术浪潮,世界各国纷纷投入大量资金与人力进行深入研究。物联网是指在物理实体中,部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息 交换 需求的互联。物联网的目标就是实现物理设备的互联互通。在2010年3月召开的全国两会上,
[网络通信]
论<font color='red'>RFID</font>技术运用于物联网的局限性
RFID技术在制造业物流管理系统中的应用
  本文搭建了基于RFID的制造业物流管理信息系统框架,设计了MES和WMS中几个物流环节在应用RFID后的基本业务操作流程,并说明了流程改进后的优势最后阐述了RFID的应用前景。    一、引言   射频识别RFID(RadioFrequencyIdentification)是在1940年出现的,首先应用于军队和一些对识别系统有特殊要求的组织。由于其较高的执行运作成本和缺少相关的技术标准,没有马上应用到商业领域,直到1980年这项技术才被引进到了商业领域。   本文把RFID的数据采集系统与MES(ManufacturingExecutionSystem)、WMS(WarehouseManagementSystem)
[网络通信]
125KHz RFID读写器的FSK解调器设计
引言   很多工作在125KHz载波频率的RFID芯片,如Microchip公司的MCRF200、MCRF250以及Atmel公司的e5551、T5557等都可以将其调制方式设置为FSK方式。若芯片设置为FSK调制方式,那么读写器(PCD)必须具有FSK解调电路。FSK解调电路将FSK调制信号解调为NRZ码。   本文给出一种FSK解调电路,该电路的特点是电路简单可靠,很适宜PCD中应用。 FSK调制   工作在125KHz的RFID的FSK调制方式都很相似,图1给出了一种FSK调制方式的波形图。从图中可见,此时数据速率为:载波频率fc/40=125K/40=3125bps,在进行FSK调制后,数据0是
[应用]
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved