DRM测试接收机设计与实现

发布者:CrystalBreeze最新更新时间:2007-05-18 来源: 电子技术应用关键字:编码  调制  音频  逻辑 手机看文章 扫描二维码
随时随地手机看文章
随着生活水平的不断提高.人们对音频广播的质量提出了更高的要求。但在传统的中短波频段广播中.由于中短波信道变化复杂、受干扰严重,且采用模拟幅度调制(AM),致使目前中短波广播的质量远远低于人们的收听要求。数字技术的迅速发展,为提高中短波广播质量提供了一种全新酌途径,音频广播从模拟到数字的过渡成为必然。

正是在上述背景下,DRM(Digital Radio Mondiale)系统应运而生。DRM系统采用OFDM调制方式,引入了先进的信源信道编码和调制技术,使得AM波段的音频广播质量大大提高,在保持现有10kHz带宽时接近了FM广播的质量。

本文首先简单介绍DRM系统,然后重点讨论DRM测试接收机的设计背景、信号处理流程及硬件平台的结构。

1 DRM系统介绍

1.1 系统概述

DRM系统采用OFDM调制方式,具有多种传输模式,适用于多种信道和带宽的传输方式,可以传送音频流及数据流。DRM标准同时提供了数模同播的广播方案,可以将模拟与数字信号同时以同一载波频率播出,有利于模拟广播向数字广播的平滑过渡。

DRM系统框图如图l所示,主要由三个逻辑通道组成:主业务通道(MSC)、业务描述通道(SDC)和快速访问通道(FAC)。

FAC通道提供信号带宽、调制方式和交织长度等信息;SDC通道提供如何解调MSC、如何找到相同数据的其他数据源,以及在复接器中为业务提供属性等信息;MSC通道包含音频或数据业务,通过复接器对不同保护级别的数据和音频业务进行复接,MSC最多可以包括四路业务,任何一路都可以是音频或数据。

1.2 信源信道编码

DRM的信源编码采用先进的AACPlus等编码技术,有效地提高了信源的压缩比。

信道编码采用基于卷积编码的多级编码(MLC,Multi-Level Coding),可以分为标准映射(SM)、对称分级映射(HMsym)和混合分级映射(HMmix)三种QAM映射类型。通过交织克服时间和频率选择性衰落,根据信道特性可以选择2s的长交织或者0.4s的短交织。

1.3 导频


DRM在所传输的OFDM码元中插入了三种导频信息,可用于接收机同步、均衡处理。其中频率导频主要用于接收机频偏的估计;时间导频用于接收机帧同步的计算;增益导频用于接收机信道估计。

2 DRM测试接收机设计背景

我国已经在部分地区进行了DRM系统的现场测试,测试效果令人满意,这给DRM系统的应用奠定了基础。

目前,国内外采用的DRM接收机大多是基于PC的DRM软件接收机,已经比较成熟,但其应用范围终究受到一定限制。适于广泛应用的便携式硬件DRM接收机目前还处于研制阶段,尚未批量生产。而DRM系统只有在专用ASIC推出后才可以迅速降低接收机的成本,才能有利于DRM系统的推广。

基于上述考虑,笔者设计了DRM硬件测试接收机。一方面是对硬件实现DRM接收机的一种探讨,另一方面可以以此为原型机,进一步为设计拥有自主知识产权的DRM接收机ASIC积累经验。为此,笔者将设计目标确定为:可以验证DRM接收系统的各种算法,可以对相同模块的不同算法进行比较,可以对算法的硬件可行性、稳定性及复杂度进行评估。考虑到全数字接收机代替现有模拟接收机需要一个长期的过程,设计中同时考虑了数模同播的兼容性问题。

3 DRM测试接收机信号处理流程

根据数模同插的要求,在设计DRM接收机RF前端时采用了改造现有模拟收音机的方法。整合后的接收机既可以收听模拟信号,又可以完成数字信号的处理,这样就可以适应数模同播的需要。下文主要讨论数字接收机的信号处理过程。

测试接收机系统框图如图2所示。接收信号通过模拟收音机前端下变频到中频,将中频信号引出,经过滤波送入AD采样,从而获得中频采样数据。

中频采样数据通过正交解调得到基带数据。首先通过码元同步找到OFDM码元的起始位置,然后通过FFT完成OFDM信号的解调,将时域数据变换到频域,并利用频率导频信息计算并校正频率偏差,因为OFDM系统对载波频偏非常敏感,经过频率校正后,频率误差应小于0.01倍子载波间隔。在此基础上,利用时间导频信息找到DRM系统的传输帧起始码元,此后接收机从传输帧起始位置开始进行后续处理。

由于短波信道变化复杂,时域及频域的选择性衰落都很强,造成丁接收信号的幅度和相位受到严重干扰,在解高阶QAM映射时会引入较大的误差,框图中的均衡模块用来解决上述问题。DRM系统设计了增益导频,分布在时间一频率域上,利用增益导频的信息进行信道均衡。

按图2所示流程,从均衡后的数据中提取FAC单元并将其解码,得到解调SDC的信息;再提取SDC单元,根据FAC的信息解码SDC,得到SDC数据实体;最后提取MSC,根据FAC、SDC的信息解码MSC。上述单元分别经过解交织、解OAM映射、Viterbi译码、能量解扰等模块的处理后,最后将MSC解复接后的数据进行音频译码或者数据解码。

4 DRM测试接收机硬件结构

测试接收机基带信号处理部分主要采用ARM与FPGA联合处理的硬件平台实现。ARM处理器可以在不改变硬件结构的情况下,通过下载不同的软件程序实现不同的功能,这样非常有利于不同算法的验证,而且ARM公司可以提供处理器内核,为进一步设计接收机ASIC奠定基础。由于ARM以half-word(16 bits)为最小处理单位,所以用ARM处理器处理比特流信号会造成处理器资源的浪费,为此针对比特流信号的处理采用专用逻辑电路实现,在测试接收机中用FPGA实现。这样,两种处理器的特性可以形成互补,使硬件平台设计比较合理。

4.1 模块划分


DRM系统设计了多种模式,不同模式的码率是不同的,在正交解调后需要变码率输出;Viterbi译码器也是以比特流为处理单位;考虑到这两个模块的算法特点及数据输出形式,将这两个模块放在FPGA中实现。

图2中所示的其他处理模块,特别是同步和均衡模块是接收机的关键模块,其性能好坏直接影响接收效果,并且根据今后现场测试的情况,其算法存在调整的可能性.因此这些模块通过ARM实现。需要对算法进行调整时,只需修改软件程序,重新载入ARM即可,硬件部分无需改动。以实现测试接收机便于对各种算法的性能进行验证和比较的目的。

4.2 硬件平台结构

测试接收机硬件平台如图3所示。FPGA采用XILINX公司的VirtexⅡXC2V500型芯片;ARM采用三星公司的S3C4510B型ARM7 TDMI芯片;ADC模块采用了AD公司14-bit的AD9243。FPGA与ARM之间通过双口RAM进行数据交互,使用HC245芯片作为地址和数据总线的驱动。

A/D采样后的中频数据送入FPGA做正交解调;FPGA将解调后的数据写入双口RAM同时给ARM产生中断信号;ARM响应外部中断,将数据读入、进行后续处理。

如图2中的流程,ARM在处理完解交织后,将处理后的数据写入双口RAM,同时向特定的地址写控制字,FPGA检测到控制字后,将数据读入.进行Viterbi译码。FPGA将Viterbi译码结果写入双口RAM,向ARM发出中断信号,ARM响应中断,将数据读入,再进行后续处理。

4.3 主控制程序流程圈


根据图2所示的DRM信号处理时序,图4为ARM基带处理主控制程序流程图,依次进行码元同步、整数倍频偏估计、帧同步及后续信道解码处理。上述过程实现了DRM接收机基带信道解码过程。

4.4 测试结果


测试信号采用模式C、10kHz带宽的DRM信号,信道采用标准中提供的2号信道模型,SNR=23dB,频偏为2倍子载波间隔。

测试结果示于图5中,其中图5(a)为未经过同步和均衡处理的数据星座图;图5(b)~(d)为接收信号通过硬件正交解调、同步、均衡、信道解码等模块后输出数据的星座图。从图5中可以看出,经过同步、均衡处理后,星座图明显改善,处理器有效地解出了三个通道的数据。

数字广播产业有广泛的市场前景,而拥有自主知识产权的接收机对民族工业具有特殊意义。本文讨论的DRM测试接收机信号处理流程及硬件平台的结构是对硬件实现DRM接收机的一次有益尝试。上述结构、算法已经在ARM7和FPGA的硬件平台上联调通过,验证了本文提出的信号处理流程及硬件平台的可实现性,但所验证的主要是基带信号处理功能,还没有包括接收机的全部.整个测试接收机的设计工作仍然需要进一步完善。

关键字:编码  调制  音频  逻辑 引用地址:DRM测试接收机设计与实现

上一篇:智能家居无线报警系统设计
下一篇:基于nRF24Z1的无线数字/模拟音频传输系统

推荐阅读最新更新时间:2024-05-07 15:58

IP电话及其在线缆调制解调系统上的应用
    摘要: IP电话采用的信道复用和基于分组交换的传输技术提高了线路传输利用率。HFC网双向改造的完成和DOCSIS的不断完善为开展IP电话增值业务提供了理想的接入网平台。本文研究了IP电话技术的现状、发展趋势以及IP电话的标准H.323规约、SIP、MGCP、RTP/RTCP和RSVP。最后介绍了一种国内开发的HFC网上IP电话应用系统。     关键词: IP电话 QoS H.323 HFC接入网     IP电话是一种利用IP网络作为传输载体实现计算机-计算机、普通电话-普通电话、计算机-普通电话之间话音通信的技术。IP电话目前还处在初级阶段,无论在标准上、设备的成熟程度上和系统的设计理论上与现有传统电话相比
[应用]
艾迈斯半导体最新3.5毫米音频接口芯片
率先面市的配件通信接口(ACI)帮助实现降噪耳机小型化,同时可支持传感器、LED和显示屏功能。下面就随半导体小编一起来了解一下相关内容吧。 近日,领先的高性能传感器解决方案供应商艾迈斯半导体公司(ams AG,瑞士股票交易所股票代码:AMS),今日宣布推出一项基于四段3.5mm音频插口的降噪耳机技术,首次实现无电池供电运行。 艾迈斯半导体发明的新通讯配件接口(ACI)使用标准3.5毫米音频线中的麦克风(MIC)线,可实现供电并能以16 Mbit /秒进行双向数据传输,同时具有数字音频信号。通过使用艾迈斯半导体 ACI解决方案去掉耳机中的电池,制造商可以使用常见且稳健的3.5mm音频接口显著降低配件的尺寸、重量和材料成本。 艾迈斯
[半导体设计/制造]
用PIC16F87X单片机实现高分辨率频率计的一种方法
1 引言 随着电子技术的迅速发展,以单片机为控制核心的控制器件,已经全面渗透到测试仪器和计量检定的各个方面。同时,频率计作为一种常用工具,在工程技术和无线电测量、计量等领域的应用十分广泛。本文介绍了一种以PIC16F87X系列单片机为控制器的高分辨率频率计的实现方法。 该方法设计的频率计主要用来测量脉冲频率。它采用LCD图形液晶显示,清晰度高,可视范围广,可外接晶体频率源,具有测量速度快、分辨率高的优点。 2 设计原理 PIC16F877A单片机内部集成有捕捉/比较/脉宽调制PWM (CCP)模块。当CCP工作在捕捉(capture)方式时,可捕捉外部输入脉冲的上升沿或下降沿,并产生相应的中断。 PIC16F877A单片
[单片机]
Dialog助力Plantronics实现领先音质
十多年来, Plantronics (缤特力)作为企业、政府及消费市场的 音频 通信领导者一直仰赖 Dialog 半导体公司提供音频和连接芯片组,Dialog产品已成为Plantronics业界领先无线音频产品的基石。   Dialog产品现在是Plantronics大部分DECT(数字增强无绳通信)产品线的基础,DECT标准广泛用于世界上大多数国家。   就像当代其他科技巨擘们的源起类似,1961年,两位民航飞行员Courtney Graham和Keith Larkin将梦想付诸实践,在美国加利福尼亚州Santa Cruz的一间小车库中创立了Plantronics。两位创始人最初希望实现商用航空耳机的创新,最终开发出了全球首款轻
[嵌入式]
基于可配置处理器Xtensa LX的数字音频方案
所有的媒体都正在向数字格式进行转换,现在就连音乐也几乎都是数字的。电视和视频正迅速转换为全数字格式。数码照片将很快淘汰过时的胶卷。在今后几年,这种转换将是全方位的,数字媒体格式将会成为标准格式。因此,电子行业需要面临数字媒体格式转换引擎的开发,以此为媒体用户提供声音和图像。 音频技术作为第一种完全数字化的媒体,在转换方面进行得最为深入。现在的音频系统必须支持多种数字音频格式,从最早的格式到最新的格式。随着数字音频格式变得越来越先进,其技术也越来越复杂,目的是通过使用更少的位数来得到更好的声音效果。随着大量的数字音频媒体格式(包括MP3、AC3、AAC和WMA)和用于手机的各种语音编解码器的使用,数字音频格式的转换需要某种固件可编
[嵌入式]
一种基本混沌调制的语音保密通信系统
    摘要: 提出一种用蔡氏电路实现混纯调制的语音保密通信方案,分析了系统的同步性能,在此基础上设计硬件实验电路,进行传送语音信号的硬件实验研究,并给了邮实验结果。     关键词: 蔡氏电路 混沌同步 混沌调制 混沌通信 近年来,国际上相继提出了将混沌同步理论应用于保密通信领域的各种方法,其中主要包括混沌掩盖 、混沌参数调制 、混沌移相键控(CSK) 和混沌数字码分多址(CD)2MA) 等。为了进一步提高混沌通信系统的保真度和安全性能, 人们正在探索新的传输方案 。 本文提出一种用蔡氏电路实现两级混沌调制的语音保密通信方案。在发端,利用蔡氏电路对发送信号进行两级混沌调制,在收端对其进行逆变换
[应用]
如何使用多线程或多核设计数字音频系统
  如果您的 MCU 应用程序需要处理数字音频,请考虑采用多线程方法。使用多线程设计方法使设计人员能够以直接的方式重用他们的设计部分。   多核和多线程是设计实时系统的有效方法。使用这些技术,系统被设计为许多任务的集合,这些任务独立运行并在需要时相互通信。将系统设计从大型单片代码块分解为更易于管理的任务,可以大大简化系统设计并加快产品开发。因此,整个系统的实时属性更容易理解。设计者只需要担心每个任务实现的保真度,提出诸如“网络协议是否正确实现?”之类的问题。   在本文中,我们将讨论如何使用多线程或多核设计方法来设计对数据流进行操作的实时系统,例如数字音频系统。我们使用几个数字音频系统来说明设计方法,包括异步 USB 音频
[嵌入式]
如何使用多线程或多核设计数字<font color='red'>音频</font>系统
WiSA E创新技术支持电视机无需HDMI连接线传输多声道音频
WiSA E创新技术支持电视机无需HDMI连接线传输多声道音频 全新的嵌入式软件为电视机制造商提供了一种低成本、功能丰富的沉浸式音频解决方案 美国俄勒冈州比弗顿市 — 2023年3月16日 — 为智能设备和下一代家庭娱乐系统提供沉浸式无线声效技术的领先供应商WiSA Technologies股份有限公司宣布: 已开发并演示了其最新的WiSA E技术,该技术旨在赋能下一代沉浸式音频产品。 WiSA E专为电视机而设计,可提供高质量的多声道音频传输,可支持多达8(甚至10)个独立扬声器单元,而无需HDMI线缆连接到条形音箱(soundbar)。 “消费者、以及行业领导者和电视机品牌商一直在寻求一种完全采用无线方式的多
[模拟电子]
WiSA E创新技术支持电视机无需HDMI连接线传输多声道<font color='red'>音频</font>
小广播
最新网络通信文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved