由于业界正在不断寻求更低的测试成本,许多RF测试工程师必须继续地缩短测量时间。如你所知,无线网络(WLAN)装置的测试操作也必须要迎合这个趋势。无论是用于设计检验的自动化测试系统或者是最终产品的测试操作,测试系统的测量速度已经变得越来越重要。然而,在大多数情况下,除了缩短测试的时间并降低测试成本之外,系统的测量精度与可重复性却不能受到影响。这篇技术文章将针对WLAN测量操作,说明可能影响测量速度的多个权衡要素。在了解了相关概念之后,还将针对提供测试系统的测量速度,提供更好的实践说明。本技术文章将按照顺序对下列要素进行说明:平均度与可重复性;完整脉冲与部分脉冲的EVM;复合测量与单一测量;测量频跨与测量时间,最后是CPU与测量时间的关系。针对上述相关的要素,本技术文章将通过NI PXIe-5663 -- 6.6 GHz RF矢量信号分析仪来进行范例测量操作。这些实例使用NI PXIe-5673 -- 6.6 GHz RF矢量信号发生器作为激励。而且所有的范例都使用了NI WLAN测量套件(Measurement Suite),其中包括NI LabVIEW与LabWindows™/CVI的信号产生与分析工具包来搭建测量平台。若要进一步了解应该如何设置PXI WLAN测试系统,可以参阅配置软件定义的WLAN测试系统。虽然这篇技术文章着重于PXI RF仪器的操作,但相同的基本测量要素也可能通用于任何RF仪器。因此,无论是PXI仪器与传统的RF仪器,都可以通过这篇技术文件来提高相关的性能。
权衡要素1 – 平均度与可重复性
无论是自动化设计检验还是生产测试方面的应用,提升测量结果可重复性的常见技术,就是平均多次测量的结果。然而,如果要设定大量的平均值来提高测量结果的可重复性,将会增加测量的时间,一般来说,总体的测量时间可以通过平均值的次数而进行线性的调整。因此,如果单一测量操作需要用时20ms,那么相同的测量结果10次取平均的时候,就将花费近200ms。
更进一步来看,由于平均操作可以将不可重复的减损(Impairment)- 如加性高斯白噪声(AddiTIve white Gaussian noise,AWGN)在多次测量之间进行抵消,因此可以有效地提高可重复性。如果要了解平均操作对可重复性的影响,就可以使用NI PXIe-5673 RF矢量信号发生器与NI PXIe-5663 RF矢量信号分析仪来执行环回测试。通过上述装置,可以在2.412GHz上产生802.11g正交频分多工(OFDM),-10dBm功率强度的RF信号。同样的,使用4种不同信号种类– BPSK (6 Mbps)、QPSK (18 Mbps)、16-QAM (24 Mbps),与 64-QAM (54 Mbps)就可以了解脉冲的大小与调制类型对测量时间的影响。如果使用1024位的有效载荷,那么每种信号类型都将具有不同数量的OFDM符号。举例来说,BPSK脉冲将具有343个符号,而64-QAM脉冲将使用39个符号。因此,每种信号类型的脉冲间隔也不一样,表1显示了不同类型脉冲宽度的不同。
误差矢量强度(EVM)测量操作可以提供完整的信号调制质量。在EVM测量操作中,有两种内置的方法可以展现平均的结果。针对IEEE802.11a/g脉冲,测量的结果将覆盖各个OFDM子载波与符号。以EVM的均方根(RMS)表示。根据表1来看,应该可以直接看出脉冲中的符号数量,而且如果EVM是较低的6Mbps(BPSK)数据传输率,应该可以产生超过54Mbps脉冲的可重复测量操作。从而可以得知较长脉冲也具有较多的符号。但是,仅当EVM是通过完整脉冲(而非特定部分脉冲)表现为RMS时,上述的假说才是成立的。权衡要素2将针对部分脉冲进行分析,说明相关的可重复性。
在一般的情况下,我们可以假设:在执行较长脉冲的测量操作的时候,将可以产生更多的可重复的EVM结果。图1显示了平均次数与测量标准偏差之间的关系。这些测量操作都是通过NI PXIe-5673 RF矢量信号发生器和NI PXIe-5663 RF矢量信号分析仪来进行的。使用-10dBm的RF平均功率,并且将这两种仪器的中间频率均设定为2.412GHz。
图1展示了当每次测量操作所使用的平均次数增加的时候,1000次EVM测量的标准偏差将随之降低。请注意,由于 图1 所使用的信号源是RF矢量信号发生器- 专门为了产生可重复的信号而设计的产品,所以图1中的EVM与标准偏差均大大好于802.11g转换器所可能产生的实际情况。因此,可以将图1显示的结果作为可重复性的标准。并且,请注意,只有以绝对测量值(Absolute measurement value)表示的测量其可重复性才有意义。一般来说,只要测试仪器的EVM标准越高,其可重复性的影响就越小。表2则显示测量操作设定为10次平均时的EVM结果。
无论调制方式的不同所测得EVM将趁于一致,然而,这也表示使用者可以通过较长的脉冲来获得较好的标准偏差。当然也将需要测量更多的符号。举例来说,如果进行10次平均就可以在64-QAM信号上达到0.081dB的标准偏差,那么当测量BPSK信号的完整脉冲时,只需要5次平均就可以达到相同的标准偏差。
一般来说,只需要花费较长的测量时间,就可以通过平均操作来达到较低的标准偏差结果。表3就以54Mbps脉冲来说明了这种关系,请注意,表3的测量时间包含 了门控功率和EVM测量操作。
在表3中,我们使用PXIe-5663 RF矢量信号分析仪与一套NI PXIe-8106控制器执行复合的EVM与门控功率测量操作。EVM是由完整脉冲的RMS计算所得;而且其中的平均值与标准偏差是以超过1000次的测量操作所计算得出的。表3则说明,测量时间与平均次数之间那趋于线性的关系。NI WLAN分析工具包使用了所谓的非同步提取(Asynchronous fetching)技术,即当分析仪提取出新的记录的时候,也同时处理以前的记录。因此,使用者不需要受到线性时间(Linear TIme)的限制就可以对多次平均进行测量操作。另外,还请注意表3所列出的单次平均的EVM与功率测量将花费9.4ms,但如果将平均次数设定在10次,测量操作就仅花费了63.6ms,即每次的平均耗时为6.3ms。
2. 权衡要素2 – 完整脉冲EVM与部分脉冲EVM
如果将仪器设定为执行部分脉冲EVM,而不是处理完整脉冲EVM测量时,就可以在某些情况下获得较快的EVM测量。按照默认值来处理,NI WLAN分析工具包将执行OFDM EVM测量来作为整个脉冲序列中所有子载波中每个符号的RMS。同样的,NI WLAN分析工具包将802.11b DSSS EVM测量作为整个脉冲序列所有片段的RMS。但是,仍然有诸多范例显示,如果仅测量脉冲的第一部分,那么不仅可以得到可重复的测量并节约测量时间。在这样的情况下,您可以通过编程来配置运算EVM所需要的符号数目或者片段数。
为了说明部分脉冲分析的影响,我们可以通过两组不同的脉冲并设定其分别使用BPSK (6 Mbps) 和 64-QAM (54 Mbps)。如表1所示,BPSK脉冲具有1434 µs的长度与343组符号;而64-QAM脉冲具有176 µs的长度和39组OFDM符号。同样的,本实验展示了运算EVM测量时间的结果作为1000次测量的平均值。每一个测量值都通过一次平均来实现并关闭了轨迹。图2 展示了用来进行运算操作的符号数量与BPSK脉冲测量时间的关系。
如图2所示,对于BPSK这种较长的脉冲序列来说,如果可以只分析序列的一部分而不是所有的符号,就可以大大缩短测量的时间。如果使用比较少的符号,就可以将该脉冲的测量时间从40ms缩短为22ms。此外,在较快的测量条件下,测量结果的可重复性可能会出现稍微的偏差。
很显然,部分脉冲测量的优点是可以缩短较长脉冲的测量时间。造成这个结果的原因就是对于较长的脉冲序列来说,进行一次测量的准备时间(内存分配、驱动调用以及数据采集的时间)与整个脉冲的测量时间相比仅占很小的一部分。而与之相反,对较短的脉冲序列(例如64-QAM和16QAM)来说,相对于使用的符号来说,灵活性就相对小了。例如,一个64-QAM脉冲序列仅包括39个先头符号。因为您需要多于16个符号来进行可重复的EVM测量,所以您将不能在64-QAM脉冲序列上显著地缩短测量时间。图3显示了针对54Mb/s的脉冲其测量时间与符号数目的关系。
用了NI PXIe-8106控制器来加快测量的速度。请注意,这些结果仅适用于某些条件,针对较长的BPSK与QPSK 802.11a/g信号而言,仅进行部分脉冲分析的确可以缩短测量的时间。
通过WLAN分析工具包,也可以使用相同的方法来设定IEEE802.11b EVM测量操作只对部分脉冲进行计算。由于802.11b使用直接序列扩频(DSSS),因此将通过多级片段来计算EVM。因为默认的EVM测量将对完整的脉冲进行计算,使用者可以将WLAN分析工具包设定为仅对1000组片段执行EVM测量操作。
上一篇:爱立信申请5G专利,构建5G网络整体架构
下一篇:北京“芯高地”的“IC生活+”
推荐阅读最新更新时间:2024-05-07 17:44