符合Rx阻塞模板和灵敏度要求的TD-SCDMA RD V2.1设计

发布者:Xiaochen520最新更新时间:2007-04-28 来源: Maxim中文网站关键字:正交  调制  基带  增益 手机看文章 扫描二维码
随时随地手机看文章

Maxim TD-SCDMA RF收发器芯片组

Maxim的TD-SCDMA移动电话RF芯片组由MAX2507 (Tx)和MAX2392 (Rx)组成。两种RF IC均采用了Maxim的室内高频工艺技术进行制造。MAX2507是全集成发送器芯片,包括从模拟I/Q输入到功率放大器输出的电路。其主要功能模块有I/Q正交调制器、上变频器、增益可调放大器(VGA)、RF压控振荡器(VCO)和锁相环(PLL)、IF本地振荡器以及RF功率放大器(PA)。该器件采用了7mm x 7mm表面栅格阵列(LGA)封装。MAX2392是对应的零IF接收器,包括从低噪声放大器(LNA)到模拟I/Q输出的电路。其主要功能模块有LNA、RF I/Q解调器、RF VCO和PLL电路、基带通道选择滤波器、直流失调校准电路,以及自动增益控制(AGC)基带放大器。MAX2392采用5mm x 5mm QFN封装。利用OEM射频RF板的完整参考设计表明,实际的PCB总面积为6.6cm2。参考设计的功能结构如图1所示,图2为参考板的照片。
TD-SCDMA标准对Rx的要求

TD-SCDMA标准对Rx的主要要求如表1所示。必须满足的最小灵敏度是-108dBm,而阻塞规范要求是谷形,带有频率失调。




灵敏度和阻塞要求分析及测量结果

接收器灵敏度是系统规范指标,受RF通道信号质量以及DSP调制解调器基带处理能力的影响很大。在最小输入信号电平条件下,RF通道质量主要受限于接收器的噪声贡献,由噪声指数(NF)确定。注意,在这些信号条件下,没有考虑接收器相位噪声,因为其电平要远远小于热噪声。因此,接收器相位噪声对输入SNR劣化的影响最小。在3GPP TR 25.945标准[3]中,接收器灵敏度规定为-108dBm。根据典型的基带处理增益和调制后的BER,接收器灵敏度对应于9dB最大接收器NF。如图1所示,TD-SCDMA参考设计接收器通道测得的NF大约为5.7dB。因此,相应实测灵敏度为-111dBm,比标准规范有3dB的余量。

带内阻塞信号对接收器性能的影响主要表现为三种现象:交叉调制、二阶互调制产物以及互混频,下面分三节对其进行讨论。

交叉调制

图3所示为交叉调制现象,它出现在放大器和混频器等非线性元件中。图中,f1信号是具有一定带宽的调制阻塞信号,f2的CW信号是所需的信号。在放大器输出端,需要的信号频谱附近出现了中心在f2的三角形互调产物。这一交叉调制产物通常与元件的三阶非线性有关,既三阶截止点。当阻塞信号具有高斯白噪声正态分布特性时,可以按以下公式来估算交叉调制产物的功率:

在输入信号也是调制信号的情况下,输出产物的波形是三角波和信号功率频谱密度函数的卷积。由于阻塞信号的特性偏离高斯噪声正态分布,交叉调制产物会减小。当干扰信号是调制后的包络恒定阻塞信号时,交叉调制产物为零。

3GPP TDD标准规定,±4.8MHz失调时,灵敏度3dB劣化允许-49dBm的调制干扰信号。如果我们认为灵敏度劣化结果仅仅来自交叉调制产物,只要交叉调制产物的功率在灵敏度电平上相对小于接收器带内热噪声功率,就能够达到这一性能指标。假设接收器的噪声指数小于标准规定的9dB,便可以从方程2推出交叉调制产生的接收器三阶截止点。

二阶互调产物(IM2)

由调制阻塞信号产生的二阶互调产物包括三部分,如图4所示:直流失调、0Hz附近的低频产物,以及2f1附近的产物。当阻塞信号的统计特性符合高斯噪声正态分布时,这三部分在功率上相等,可以使用图4中的公式进行估算。当阻塞信号的统计特性接近包络恒定的信号时,低频产物的功率会降到最低。当干扰信号是包络恒定的阻塞信号时,输出端没有低频IM2产物。在零IF接收器的I/Q输出端,这些低频和直流IM2分量落在需要的下变频信号带宽内,导致接收器性能劣化。在MAX2392接收器电路中,消除了片内直流失调,因此,计算接收器干扰预算时,只需要考虑低频IM2产物。

3GPP TDD标准规定,±4.8MHz失调时,灵敏度3dB劣化允许-49dBm的调制干扰信号。与交叉调制的情况相似,如果我们认为灵敏度劣化结果只来自低频IM2产物,接收器的NF小于标准规定的9dB,可以估算出需要的接收器二阶截止点IIP2,RX,如方程3所示。假设在后混合基带通道选择滤波器中消除了下变频带内阻塞信号,接收器二阶截止点仅由零IF下变频器阻塞信号决定。

注:“-3”和调制系数有关。

MAX2392有四种工作模式。在出现较大阻塞信号时,接收弱信号建议使用高增益高线性(HGHL)和高增益中等线性(HGML)模式。对于参考设计的接收器,这两种模式都会测得IIP2,RX > +15dBm,符合要求,并且至少有12dB的余量。

相位噪声和相互混频

3GPP TD-SCDMA标准并没有明确规定VCO的相位噪声;而是取自其他相关的规范。如前所述,发送器EVM是受发送器VCO+PLL相位噪声影响的参数之一,它对射频设备的相位噪声没有严格要求。接收器灵敏度也和LO相位噪声有关,但即使是在16QAM调制的情况下,对射频设备也没有严格的相位噪声要求。对LO相位噪声有严格要求的两种规范是阻塞和双频互调特性最小要求。这些规范对干扰信号相互混频或者LO边带噪声调制等现象有要求,如图5所示。

正如所讨论的阻塞和双频互调要求,在这些测试情况下,允许接收器灵敏度劣化3dB。我们假设所有的劣化都来自相位噪声相互混频,接收器噪声指数小于规范规定的9dB。我们可以利用下面的公式推算出所需要的LO相位噪声:

阻塞和双频互调测试中的最大干扰功率是从信号中心频率偏移±3.2MHz时的-46dBm。将该值带入上面的公式,在偏移载波3.2MHz时,得到接收器LO相位噪声小于-119dBc/Hz。MAX2392 VCO测得的相位噪声是-129dBc/Hz,符合要求,并且有10dB的余量。

对于四路带外阻塞,LNA之前的SAW滤波器抑制所有的带外干扰,降低其电平以避免出现LNA压缩。由于LNA输出端的阻塞信号电平与混频器IP2和IP3相比已经非常低了,因此不需要在LNA和混频器之间使用SAW滤波器。级间滤波器提供所需的平衡变换器功能,因此,不增加成本就可以获得更多的滤波功能。例如,在±85MHz失调时,规定的阻塞信号是-15dBm。如果SAW提供30dB衰减,LNA的阻塞信号电平是-46dBm (T/R开关有1dB损耗),接近带内阻塞信号电平,可以采用上面的方法针对IM2和IM3进行分析。测量结果表明,测试每一阻塞信号时,3GPP要求至少有3dB的余量。

结论

Maxim的TD-SCDMA参考设计V2.1完全符合3GPP标准要求,在所有关键的接收器指标上,至少有3dB的余量。

关键字:正交  调制  基带  增益 引用地址:符合Rx阻塞模板和灵敏度要求的TD-SCDMA RD V2.1设计

上一篇:三层交换机处理器收发包相关问题分析
下一篇:基于Linux操作系统下的TCP/IP网络通信研究与应用

推荐阅读最新更新时间:2024-05-07 15:58

picoChip推出针对家用基站的基带处理器PC3xx
2008 年 6 月 23 日, picoChip 今日宣布推出特别针对快速增长的家用基站市场的新型 SoC 基带处理器 PC3xx 系列,该系列新一代器件结合了 picoChip 经过现场验证的 modem 软件,使家用基站制造商在提高性能的同时充分降低 BOM 成本。这一成本节省对大批量消费类家用基站部署而言是一个关键推动力量。 picoChip PC302 是该新系列的第一个成员,它是一个符合 TR25.820 标准的 HSPA 家用基站单片解决方案,并集成了最近成为标准的 Iu-h 接口。 PC302 支持高达 4 个用户的家用基站和中小企业( SME )接入点,以及 14.4Mbps/5.7Mb
[模拟电子]
精密差分输出仪表放大器解析
   采用最先进技术的模数转换器(ADC)能够接受差分输入信号,从而允许将来自传感器的整个信号路径以差分信号的形式传送给ADC。这种方法提供了显著的性能优势,因为差分信号增加了动态范围,减小了交流声,并且消除了对地噪声。      图1a和1b所示的是两种常见的差分输出仪表放大器电路。前者提供单位增益,后者提供了2倍增益。但是,与单端输出的仪表放大器相比,这两种电路都会受到增加噪声、失调误差、失调漂移、增益误差和增益漂移的影响。   图1a,1b:设计差分输出仪表放大器的通用方法。上部电路保持增益,下部电路将增益加倍。   In-amp=仪表放大器   Output Voltage=输出电压   op amp=
[模拟电子]
ST高精度高带宽运算放大器问市,可实现22MHz增益带宽
意法半导体推出TSV7722高精度高带宽运算放大器,可实现22MHz的增益带宽和11V/μs的圧摆率,非常适合在功率变换电路和光学传感器中进行高速信号调理和精确电流测量。 最大200µV的输入失调电压 (在25°C时典型值为50µV),配合7nV/√Hz的超低输入电压噪声密度,让TSV7722可以准确地测量低边电流。此外,2pA典型输入偏置电流还可以TSV7722在烟火探测器等光电感测应用中准确测量光电二极管电流。TSV7722是一款单位增益稳定的放大器,可以驱动最大47pF的容性负载,在模数转换器(ADC)中用作输入缓冲器。 TSV7722的工作电压范围为1.8V-5.5V,可以使用与微控制器等低压CMOS器件相同
[模拟电子]
ST高精度高带宽运算放大器问市,可实现22MHz<font color='red'>增益</font>带宽
英特尔怨念:卖出基带芯片业务后仍损失了数十亿美金
据GIZMODO网站报道,今年7月英特尔宣布将其手机基带芯片业务以10亿美金的价格卖给苹果。交易完成后,英特尔手机基带芯片业务旗下2200多名员工、各类设施设备、租赁、相关专利和知识产权将一并归入苹果公司。 近日,路透社指出,即使英特尔以10亿美金的价格将手机基带芯片业务卖出,仍然损失了数十亿美金。而据英特尔在11月29日向法院提交的对高通反垄断指控案上诉文件中称,正是高通的不正当竞争手段导致了这些亏损。 摆脱和高通的竞争关系后,英特尔将在PC、汽车和IoT组件开发等非智能手机业务领域注力。 而通过此次收购,苹果硬件业务领域得以扩充,大量有经验的技术人员和专利技术一举两得,对于苹果自研调制解调器来说也多了一口喘息空间,能够专心应对
[手机便携]
基于OFDM调制技术的“芯连芯”智能路灯控制解决方案
StrongKIWI方案应用业界最先进的OFDM调制电力线载波技术,使用单相电力线作为数据传输通道即可实现对现有路灯系统三相中的任意一相进行远程控制和状态回传。方案实现了路灯控制器与集中器之间的通讯,以GPRS/CDMA进行集中器和云端服务器通讯。用户可以在控制室通过PC或者通过手机、pad等手持终端(使用安全加密通道)对任意一个路灯控制器进行控制和数据读取,在后台可以实现历史数据和实时数据的管理。 StrongKIWI“芯连芯”智能路灯控制解决方案抗干扰能力强,无需布线即可实现路灯的智能管理,尤其适合隧道、高速公路、景观照明等不方便布线,无线传输干扰大等场合。 “芯连芯”系统方案的特点 “芯连芯”是强壮的芯(核心硬件)加上智
[电源管理]
基于OFDM<font color='red'>调制</font>技术的“芯连芯”智能路灯控制解决方案
用NCP1200代换脉宽调制控制UC3842的应用电路
摘要:介绍了低功率通用离线电源的脉宽调制电流模式控制器NCP1200的优点及其代换电路,同时结合代换电路,指出了实际应用中出现的问题和解决办法。 关键词:脉宽调制控制器 电流模式控制 NCP1200 NCP1200是ON Semiconductor公司生产的低功率通用离线电源脉宽调制电流模式控制器,它代表向超密集型开关电源的大飞跃。该器件在对元件数据要求比较严格的场合,特别是在低价AC/DC变换器或辅助电源等应用方面,不失为理想的选择。NCP1200包含了基于UC3842的电源中通常所需的所有必要元件,包括定时元件、反馈器件、低通滤波器和自供电等。 1 NCP1200的结构与设计特点 1.1 NCP1200的内部结构 N
[应用]
第四代LTE基带上300Mbps、20nm
    高通正式推出第四代3G/LTE多模基带"Gobi MDM9x35",以及相应的RF收发器芯片"WRT3925"。MDM9x35支持全球性的载波聚合,理论下载速率最高300Mbps。同时它还是全球第一款采用20nm工艺制造的基带芯片。http://t.cn/8kzCFWe →李备_2012   :这才是Q公司正真有竞争力的产品 →许宏川V: 坐等明年intel和三星分别领导pc和移动同时进入14nm的世界。
[手机便携]
高通凭借骁龙X35 5G调制解调器及射频系统推动全球5G RedCap扩展
要点: OEM厂商和运营商选择骁龙X35 5G调制解调器及射频系统推动5G RedCap部署,打造外形更小巧、更具成本效益的5G终端,并于2024年开始发布。 全球移动领军企业利用全球首个宣布商用并符合Release 17标准的RedCap调制解调器——骁龙X35 5G调制解调器及射频系统进行5G RedCap现网试验,加速生态系统发展。 2023 年 11 月 6 日,圣迭戈 —— 作为全球首个宣布商用并符合Release 17标准的5G RedCap调制解调器及射频系统,骁龙 ® X35 5G调制解调器及射频系统助力全球移动网络运营商和OEM厂商打造具有全新外形尺寸的终端并带来全新体验,持续推动5
[网络通信]
高通凭借骁龙X35 5G<font color='red'>调制</font>解调器及射频系统推动全球5G RedCap扩展
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved