MPEG4音、视频编码芯片IME6400及其应用

发布者:草莓熊猫最新更新时间:2006-11-16 来源: 国外电子元器件关键字:QFP  压缩  码率  DSP 手机看文章 扫描二维码
随时随地手机看文章

1 概述

MPEG4是运动图像专家组(Moving Picture Expert Group)标准系列中的一员,是国际标准化组织为多媒体通信制定的一种解决方案。MPEG4的主要特点是对图像中的内容进行编码。它比MPEG2编码具有更多的优点。为此,韩国INTiME公司推出可支持MPEG4标准编码方案的集成电路芯片IME6400,从而引发人们开始研究利用该集成电路来提升监控系统的速度和性能。本文结合IME6400在嵌入式系统下的应用对该芯片进行了简要介绍。

2 IME6400的性能特点

IME6400是一片采用240脚PQFP封装的多通道数字音、视频编码系统级芯片,该芯片可以支持MPEG4/2/1视频压缩编码标准;同时支持I、P和B帧压缩。其图像大小可以编程设定,最大尺寸可达2048×2048;码率可以支持固定和可变码率压缩,并且支持动态检测。

IME6400可支持48/44.1/ 32/ 24/ 22.05/ 16kHz音频采样。它的同步串行接口为可选的外部音频DSP。而外部接口则用32-Bit来同步DRAM总线接口和8/16Bit的外部HOST接口。另外IME6400需要27MHz的外部时钟。

3 IME6400主要引脚功能

3.1 SDRAM引脚

IME6400中的SDRAM接口能支持32bit同步DRAM总线接口。根据不同的需要可选用4Mbits到64Mbits不同大小的SDRAM。当需支持高分辨率、MPEG4编码时,其最小的SDRAM大小应为32Mbits。SDRAM接口的主要引脚功能如下:

DD[31:0]:SDRAM数据总线。

DA[14:0]:SDRAM地址总线,其中DA[14:13]和SDRAM的BANK[1:0]连接。

DNWE:SDRAM的写使能信号端,低有效。

DNCS:SDRAM的片选信号,低有效。

DQM:SDRAM数据的输入/输出mask使能。

NRAS:SDRAM行地址选通端,低有效。

NCAS:SDRAM列地址选通端,低有效。

CKE:时钟使能信号端,高有效。

CKO:外部的SDRAM时钟输出端。从SDRAM读写数据时应从它的上升沿采样。

3.2 视频信号引脚

IME6400芯片可对CCIR-601接口的数字视频信号进行编码。对于从摄像头或者播放设备来的模拟视频信号,则需要先进行A/D采样,以将其变成所需要的信号格式。视频信号接口引脚的功能描述如下:

VD[15:0]:数字YUV信号输入端。

VSYNC:垂直同步信号,它的活动极性是可以编程设定的,默认为高有效。

HSYNC:水平同步信号,高有效。

DVALID:视频信号有效指示端。当其为低时,表示视频数据无效;而当其为高时,表示输入视频数据有效。

PCLK:点时钟输入,输入的视频数据在时钟的上升沿被采样。这个时钟应当由外部的视频A/D芯片提供。因为IME6400只支持16bits视频接口,所以应当提供13.5MHz的时钟频率。

FIELD:奇偶指示端。

3.3 静态内存引脚

由于IME6400是基于一个CPU的内核,所以上电初始化必须从ROM启动。IME6400的启动有两种方式,一种是通过内部ROM,一种是通过静态内存接口外接ROM来引导。推荐使用外接ROM来引导IME6400的初始化。这个接口的引脚功能如下:

ADR[16:0]:静态内存地址总线。

DATA[7:0]:静态内存数据总线。

NRST:主芯片复位信号,低有效。

MCLK:主芯片时钟输入端,不同的频率对应不同的分辨率,当其接高分辨时,应接27MHz时钟,此时图像尺寸可以为640×480、720×480、768×576等,帧率为25~30帧/秒。

RADR[1:0]:ROM低地址信号。

RNOE:ROM数据输出使能信号端,低有效。

EXTBOOT:该端接低时芯片从内部ROM引导启动;接高时芯片从外部ROM引导启动。

SNOE:SRAM数据输出使能信号端,低有效。

SNWE:SRAN数据写使能信号端,低有效。

GPIO[7:0]:可编程引脚。

3.4 I2C接口引脚

IME6400可以作为I2C的主设备来对视频A/D芯片的内部寄存器进行配置以管理视频A/D芯片。I2C接口引脚功能如下:

IICSDA:I2C串行数据端。

IICSCL:I2C串行时钟输出端。

3.5 外部HOST接口引脚

这个接口引脚功能如下:

MODE[1:0]:外部HOST接口模式选择端具体选择方式如表1所列。有四种模式可供选择,本文设计的系统选用同步BURST模式1。

表1 外部HOST接口模式选择表

模   式 MODE[1:0] CPU
同步BURST模式0 00 PLX9050/9080
同步BURST模式1 01 MPC850/860
同步BURST模式2 10 CYPRESS EZ-USB
异步SINGLE模式 11 INTEL MCU

BW:外部HOST接口总线宽度设定端,接低时,HOST接口适应16bits;接高时,HOST接口适应8bits宽度。

HD[15:0]:外部HOST接口数据总线。

HA[4:0]:外部HOST接口地址总线。

NCS:IME6400的片选信号端,低有效。

ADS:外部HOST地址选通信号,低有效。

NRD:外部HOST数据读选通信号,低有效。

NWR:外部HOST数据写选通信号端,低有效。

FRD:外部HOST数据快速读选通信号端,低有效。

USEOCK:用于指示外部HOST接口使用的时钟源。该脚接低时,表示使用内部时钟,接高时,则表示用外部时钟。

HCLK:外部HOST接口时钟输出端。

NFULL:Bit 流FIFO状态信号端。当FIFO是Half-full或者Full时,此引脚输出高电平。

READY:当接口模式是同步模式时,此引脚可用来指示数据准备状态。

3.6 音频编解码引脚

这个接口引脚的功能如下:

CCLK:音频编解码时钟信号输入端。IME6400支持音频的采样速率为32、44.1和48kHz,为了支持不同的采样率,输入的时钟也应当不同。当CCLK输入12.2880MHz时钟时,系统将支持32kHz或者8kHz的采样频率;而当CCLK输入11.2896MHz时,则支持44.1kHz的采样频率。

SDATA:串行音频数据线输入端。

SCLK:串行音频时钟信号输出端。

IRCK:左-右时钟信号输出端。

3.7 其它引脚功能描述

CPUTEST:内部CPU测试端,高有效。

PLLTEST:内部锁相环测试端,高有效。

FUNTEST:芯片功能测试端,高有效。

DIV34:SDRAM的时钟模式选择端。接低时,表示SDRAM的时钟频率为芯片主时钟MCLK的3倍;接高则表示SDRAM的时钟频率为MCLK的4倍。

4 嵌入式监控系统设计

通过对IME6400的研究,笔者设计了一个嵌入式监控系统,图1是该监控系统的设计框图。图中,音频、视频信号分别进行A/D采样后,其数据将输入IME6400以进行MPEG4压缩编码,编码后的压缩视频流通过HOST接口被嵌入式CPU读取,随后即可存储到硬盘或者通过网络存储到其它载体之中。

4.1 音频接口的设计

本设计中,音频A/D采样选用TEXAS公司的PCM1801,它是一个5V供电的双声道ADC。输入的时钟为11.2896MHz,可适应44.1Kbits的采样。PCM1801与IME6400的连接方式如图2所示。

4.2 视频接口及I2C接口的设计

视频A/D选用ROCKWELL公司的BT829B。它可以输出CCIR-601接口的数字视频。BT829B有两组时钟输入,如果只用其解码PAL制式的视频信号,应把时钟输入到XT0I,并把XT1I接低。BT829B可作为I2C的从设备与IME6400的I2C接口进行连接,这样IME6400可以完成对BT829的管理。其视频接口连接方式如图3所示。

4.3 HOST接口的设计

IME6400的外部HOST接口主要用来传输编码后的数据流。四种外部HOST接口的模式可由MODE管脚来决定。本设计选用的模式为同步Burst 模式1,对应于MODE1:0 pin = 2' b 01。即对应MPC850/860的情况。

嵌入式CPU可选用MOTORALA公司的MPC850。HOST接口时钟可以由MCLK或者FRD来提供,其值则可由USEOCK的值来决定。本设计中,由于USEOCK为1,因此,FRD被用作内部的时钟源。这个27MHz的时钟源可由主控板提供。HOST接口的连接方式如图4所示。

MPC850从HOST接口读取压缩数据采用Burst方式,IME6400的NFULL信号直接输入到MPC850的 IRQ。Burst可编程设定,并且只是用在读取压缩数据时,最大的Burst长度为256个字节,即一次操作可以读取256个字节,由此可见,该设计可大大提高读取速度。

4.4 SDRAM接口的设计

为了压缩视频和音频数据以及存储编码流,一般都需要用外部的SDRAM。其大小与要压缩的图像大小和模式有关。本设计选用的SDRAM大小为2MB×32。IME6400最大可以访问2Gbits的外部SDRAM。目前本设计选用的地址大小为11行8列。

SDRAM的时钟是三倍或者四倍的MCLK时钟,可由DIV34的值决定。本设计中,MCLK时钟是27MHz,选三倍MCLK时钟时,SDRAM的时钟为27×3=81MHz。SDRAM选用K4643232E。其连接方式如图5所示。

4.5 ROM接口的设计

如果用内部引导ROM,IME6400不需要外部ROM,但在外部引导模式,则需要一个ROM接口。外部的ROM最大可达4MB。本设计中,EXTBOOT选用跳线方式来控制用外部还是内部ROM来引导。本设计中的外部ROM选用28C256,这是一款256kB(32KB×8)并采用5V供电的存储器件。MCLK的27MHz时钟由主控板提供。

IME6400对于FIRMWARE的下载有2种方式,可通过管脚P236(EXTBOOT)上的跳线开关来选择,该跳线开关为高电平时选择外部28C256启动,低电平时选择从MPC850启动。

5 该监控系统的优点

应用IME6400硬件设计的MPEG4压缩和嵌入式系统可以使监控系统的性能大大提高,主要表现在:

(1)录像和预览同样清晰,图像格式均可以实现D1,全动态码率最大可控制在200MB/小时。

(2)压缩速度更快,实时流播放时无滞后延迟。最小延迟可以小于1秒。

(3)压缩数据的读取可以采用Burst方式,从而提高了读取速度,同时也为嵌入式CPU的采用创造了条件。

6 结束语

本文通过对IME6400芯片的分析,提供了一种MPEG4的实时音、视频压缩技术方案。并针对商业用途设计了一种嵌入式MPEG4视频监控系统。


关键字:QFP  压缩  码率  DSP 引用地址:MPEG4音、视频编码芯片IME6400及其应用

上一篇:手机白光LED驱动电路解决方案分析
下一篇:基于gm5020芯片的等离子彩电的研制

推荐阅读最新更新时间:2024-05-03 10:58

TM1300 DSP系统以太网接口的设计
摘要:基于IP网络的多媒体应用越来越广泛,本文首先解决多媒体DSP芯片TM1300与以太网控制器CS8900A的硬件接口的设计,分析嵌入式操作系统pSOS+内核中实现TCP/IP协议栈的网络模块pNA+,最后实现在pSOS+操作系统环境下CS8900A的网络驱动程序的设计。 关键词:TM1300 CS8900A pSOS+ pNA+ 驱动程序 1 概述 随着网络技术、多媒体技术的飞速发展,基于IP网络的多媒体应用越来越广泛。TM1300是Philips公司推出的一款高性能多媒体数字信号处理器芯片,适合于实时性强的音视频处理应用,可广泛应用于会议电视、可视电话、远程图像监控等应用场合。具有广阔的应用前景。 根据具体的基于I
[嵌入式]
ARM/DSP双核系统的通信接口设计
引 言   嵌入式系统的核心是嵌入式微处理器和嵌入式操作系统。早期的嵌入式系统硬件核心是各种类型的8位和16位单片机;而近年来32位处理器以其高性能、低价格,得到了广泛的应用。近年来,又出现了另一类数据密集处理型芯片DSP。DSP由于其特殊的结构、专门的硬件乘法器和特殊的指令,使其能快速地实现各种数字信号处理及满足各种高实时性要求。随着现代嵌入式系统的复杂度越来越高,操作系统已成为嵌入式系统不可缺少的部分。免费的嵌入式操作系统,如Linux等,随着自身不断的改善,得到了飞速的发展。Linux是一个免费的、强大的、可信赖的、具有可伸缩性与扩充性的操作系统。Linux实现了许多现代化操作系统的理论,并且支持完整的硬件驱动程序、网络通
[嵌入式]
DSP与智能彩色液晶显示器接口设计
近年来,随着低价格、高性能DSP芯片的出现,DSP已越来越多地被应用于高速信号采集、语音处理、图像分析处理等领域中,并显示出巨大的优越性。智能彩色液晶显示器具有显示直接美观、便于操作的特点,被用作各种便携式系统的显示前端。它一般采用工业级的高频CPU可以自行对接收的命令和数据进行处理因而能够提高用户端接口的软件开发效率。 一般的液晶显示往往采用单片机控制但在系统需要大量高速实时数据的情况下,单片机由于受处理速度的限制就显得力不从心而且一般的液晶显示仍采用烦琐的点阵操作来显示汉字和图形,而这又增加了软件开发的难度。为了解决这些问题,本文将提出一种基于DSP控制的智能彩色液晶显示器的接口设计方法,从而有效地解决了上述问题。
[嵌入式]
<font color='red'>DSP</font>与智能彩色液晶显示器接口设计
赛灵思与微软汽车业务部推出的智能车载信息系统
        根据美国交通部的一项研究,全世界人们每周在汽车上度过的交通时间超过 5 亿小时。 既然花在汽车上的时间如此之多,人们希望能够利用这些时间来享受娱乐,同心爱的人说说话,甚至完成一些通常需要在工作场所才能完成的任务。           在汽车中保持联系是人们最想实现的,这只要看一看手机的使用就可以知道。 另外,路上遭遇严重的交通堵塞,走错了路,或者遇到像汽油用完了之类的常事,都可能影响您准时到达目的地。          如何才能让驾驶者在安全驾驶的同时保持联系,并按时到达目的地呢? 巧妙的方法是通过语音命令结合互联网连接进行通信和控制。 Microsoft Telematics Platform(微软车载信息处理平台
[嵌入式]
IGBT-IPM智能模块计及其在SVG装置中的应用
   1 引言   电力系统中大功率电力电子装置的开关元件主要是晶闸管和GTO。但是,随着近年来双极功率晶体管及功率的问世以及生产技术的成熟,这些开关元件凭借自身优越的性能逐渐替代了晶闸管和GTO,并朝着节能、轻便、小型化的方向迅速发展。IGBT-IPM?Intelligent Power Module)智能模块正是其中的代表之一,它将IGBT单元、驱动电路、保护电路等结合在一个模块之中,利用这些优越的特性可极大地提高实际应用系统的稳定性?同时可简化设计的难度?缩小装置的体积。    2 IGBT智能模块的主要特点   与过去IGBT模块和驱动电路的组合电路相比,IGBT-IPM内含驱动电路且保护功能齐全,因而可极大地提高
[电源管理]
基于FPGA+DSP的视频处理系统设计
  0 引言   本系统采用基于 FPGA 与 DSP 协同工作进行视频处理的方案,实现视频采集、处理到传输的整个过程。   实时视频图像处理中,低层的预处理算法处理的数据量大,对处理速度要求高,但算法相对比较简单,适合于用FPGA进行硬件实现,这样能兼顾速度及灵活性。高层的处理算法结构复杂,适用于运算速度高、寻址方式灵活、通信机制强的DSP芯片宋实现。   DSP+FPGA架构的最大特点是结构灵活、有较强的通用性、适合于模块化设计,从而能够提高算法效率,同时其开发周期短、系统易于维护和升级,适合于实时视频图像处理。   系统采用模块化的设计方法,将整个系统划分为三部分:视频采集单元、视频处理单元和视频传输单元。   整个系统以F
[嵌入式]
基于FPGA+<font color='red'>DSP</font>的视频处理系统设计
CEVA-BX2™音频DSP支持Dolby MS12多码流解码器
随着智能电视、空中内容服务(over-the-top(OTT))和机顶盒发展成为多功能的数字媒体接收器,多种内容来源要利用多种音频编解码器来获得。Dolby MS12是一款全面的高效低成本解决方案,可减低将多种音频技术集成到这些设备中的复杂性。Dolby MS12支持各种优质音频内容的解码,包括Netflix等许多内容服务提供商所使用的Dolby Atmos,以及作为ATSC 3.0 中下一代音频标准之一的Dolby AC-4。 CEVA在CEVA-BX2 DSP上实现和优化的Dolby MS12获得认证,将使得系统级芯片(SoC)设计人员和设备制造商能够将Dolby技术(包括Dolby Atmos和Dolb
[物联网]
CEVA-BX2™音频<font color='red'>DSP</font>支持Dolby MS12多码流解码器
大容量闪存器件K9KAG08UOM与DSP接口设计
   前言   惯性导航系统、各种导引头及空间飞行器等测试和记录应用系统,都需要自主、实时、可靠存储大量的关键信息,并保证即使整个系统掉电,所采集到的数据仍能长时间保持不丢失,实现历史数据查询,便于数据分析。NAND Flash闪速存储器(简称闪存)以其掉电非易失、功耗低、寿命长、容量大、升级容易等独有的特点迅速成为数据存储的最佳选择。   某型激光陀螺惯导单元需要在湖试和海试试验过程中记录大量导航参数,为了便于在试验结束后有效分析数据。这里提出一种基于大容量闪存器件K9KAG08UOM与DSP的接口设计方案。在激光惯导的计算机板上集成了一片NAND Flash闪速存储器,根据试验的次数和每个航次存储数据量的大小,选用SAMS
[嵌入式]
小广播
最新手机便携文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved