中国AI产业链:芯片、语音识别、无人驾驶成产业热点

发布者:bln898最新更新时间:2017-10-23 来源: 经济参考报关键字:AI 手机看文章 扫描二维码
随时随地手机看文章

近日,中国人工智能产业发展联盟组建成立。据介绍,联盟将快速推动人工智能技术在生产制造、健康医疗、生活服务、城市治理等场景的应用,提升产业发展能力与水平。同时,将整合全产业链资源,促进人工智能科技成果和资源的积累与转化。

业内比较一致的看法是,人工智能产业链可分为基础层、技术层和应用层。对此,全球巨头立足自身核心技术进行扩散,积极进行布局。与此同时,中国人工智能产业链也已“显山露水”,20余家A股公司正在“抢滩”产业链。

基础层:中国芯片尝试“弯道超车”

基础层主要包括计算芯片、大数据、存储。微软的最新研究报告称,在人工智能领域,传统的芯片计算架构已无法支撑深度学习等大规模并行计算的需求,这就需要新的底层硬件来更好地储备数据、加速计算过程。基础层主要以硬件为核心,其中包括GPU/FPGA等用于性能加速的硬件、神经网络芯片、传感器与中间件,这些是支撑人工智能应用的前提。这些硬件为整个人工智能的运算提供算力,目前多以传统的国际IT巨头为主。

目前,在GPU领域,英伟达主打工业级超大规模深度网络加速,并推出了基于Volta、首款速度超越100TFlops的处理器Tesla;英特尔主要围绕FPGA构建产业,推出了模仿人脑的人工智能芯片。谷歌也推出了第二代TPU芯片,为自己的开源TensorFlow框架提供芯片支撑。此外,在这一领域还有众多的初创公司,如中星微、寒武纪以及西井科技等,但在产业布局能力和研发实力方面,还不能与上述巨头匹敌。

《经济参考报》记者注意到,中国在类人脑芯片上的探索起步并不晚。2015年,由浙江大学计算机学院牵头,浙江大学与杭州电子科技大学的学者合作研制出了国内首款基于硅材料(CMOS)的支持脉冲神经网络(SNN)的类脑芯片——“达尔文”芯片。该课题组认为,“达尔文”虽是国内首款支持脉冲神经网络的类脑芯片,但与国际先进水平的IBM TrueNorth芯片比较,还有一定距离。

中国在类人脑计算上的探索目前比较受关注的是中国科学院计算技术研究所陈云霁、陈天石主导的“寒武纪”课题组。计算所的有关专家告诉记者,寒武纪深度学习处理器的能效比主流CPU和GPU有两个数量级的提升,具有较强的市场竞争优势。从2017年起,“寒武纪”课题组获得了中科院为期18个月共计1000万元的专项资金支持,用于项目研发及产业化。据中国科学院计算技术研究所智能处理器研究中心介绍,这1000万元专项资金一方面用于人工智能芯片的基础性研究,探索下一代人工智能芯片的架构、算法以及在一些新型场景(如AR/VR)中的应用开发方法。这将为我国参与智能时代国际芯片市场角逐打下科学和技术基础。专项资金另一方面用于寒武纪芯片在各种智能云服务器、智能终端和智能机器人市场中的推广,力争在18个月内初步奠定寒武纪芯片在智能芯片市场上的地位。

中科院计算所有关负责人表示,“‘龙芯’是一条路,寒武纪是一条路,而与IBM、英特尔、AMD合作是另一条路。‘龙芯’走的是‘人有我有’之路,寒武纪走的是‘弯道超车’之路。”

技术层:国产语音识别算法取得突破

技术层包括算法平台、图像识别、自然语言识别处理和智能机器人。当前,国内的人工智能技术平台主要聚焦于计算机视觉、语音识别和语言技术处理领域,国内技术层公司发展势头也随之迅猛,其中有代表性的企业包括科大讯飞、格灵深瞳、捷通华声(灵云)、地平线、SenseTime、永洪科技、旷视科技、云知声等。

麦肯锡的一份研究报告对中国人工智能发展状态进行了全面而细致的梳理。麦肯锡认为,中国在算法开发方面与其他国家相当。中国的研究者在开发用于语音识别和定向广告的算法方面已经取得突破。得益于全球的开源平台,中国企业能够快速复制其他地方开发的最先进的算法。

中国科技战略研究院有关专家对记者表示,“人工智能产业的发展离不开海量数据的支撑,数据训练量的大小影响着算法实现的成熟度。”阿里云iDST总监初敏表示,算法、数据、计算平台、用户、商业模式,用互联网的思维把这五个因素串起来,人工智能迭代才能非常快。以更快的速度使用反馈数据来更新模型,形成这样的正循环周期后,效果就会越来越好。哪怕就是算法不变,只要能不断地反馈数据并不断优化,过一两个月之后,它的能力也会好很多。

国内的曙光公司联合众多企业成立了航天星图、中科三清、曙光易通,锁定数据。航天星图专注于地理空间大数据处理、可视化应用,中科三清由曙光与中科院物理所合资,专注于大气、水以及土壤污染的预报、预警,治理评估和应急提供可行性的解决方案。除了传统IT企业在抢数据资源之外,事实上,中国也涌现了很多运营和经营数据的公司,比如数据堂、星图数据、百分点等,并涌现了更多公共数据开放平台。

数据显示,2016年中国数据总量占全球数据总量的14%。据预测,到2020年,中国的数据总量将占全球数据总量的20%,届时中国将成为世界第一数据资源大国和全球的数据中心。

创新工场人工智能战略白皮书显示,数据隐私、数据安全对人工智能技术建立跨行业、跨领域的大数据模型提出了政策、法规与监管方面的要求。各垂直领域的从业者从商业利益出发,也为数据的共享和流转限定了基本的规则和边界。此外,许多传统行业的数据积累在规范程度和流转效率上还远未达到可充分发挥人工智能技术潜能的程度。

麦肯锡表示,中国的大技术公司通过它们专有的平台收集数据,但中国在创建数据友好的生态系统方面落后于美国,缺少统一的标准和跨平台的共享。从世界有关国家看,开放政府数据有助于私营部门的创新,但中国公共部门开放的数据相对较少。

应用层:驾驶、医疗等成热点领域

应用层包括无人驾驶、智能安防和智慧医疗等。从全球看,IBM最早布局人工智能应用,“万能Watson”推动多行业变革。百度推出“百度大脑”计划,重点布局无人驾驶汽车。而谷歌的人工智能业务则较为繁杂,多领域遍地开花,包括AlphaGo、无人驾驶汽车、智能手术机器人等。微软则在语言语义识别、计算机视觉等领域保持领先。

科大讯飞董事长刘庆峰表示,2017年是中国人工智能应用的落地年,成为人工智能产业发展的分水岭。他认为,应用才是人工智能发展的硬道理,只有技术不断地应用在各个领域,才能得到发展。

腾讯集团董事长马化腾表示,没有场景支持的人工智能研究是空中楼阁。这些年,人工智能技术的快速发展,让人工智能在个人助理、汽车领域、医疗健康、安防、电商零售、金融、教育等方面的应用覆盖了生活的各个方面。

百度公司总裁张亚勤表示,百度要做人工智能时代的操作系统,需要建立一个生态,没有场景的人工智能是没有用的。百度未来10至20年的战略都押注在人工智能领域,公司所有的资源和技术都向其倾斜。

人工智能在汽车领域的应用前景十分广阔,其中自动驾驶最受人关注。在自动驾驶领域,很多厂商已经深耕数年,这让2016年成为自动驾驶充分竞争的一年。今年百度智能汽车正式亮相,向全球展示了百度在高精地图生产制造、自动驾驶环境感知等领域的领先技术,并发布自动驾驶开放平台。通过应用人工智能技术,能够提高公共交通系统的安全性和效率,自动驾驶车辆也可以减少交通事故、缓解交通压力,为实现指挥交通发挥重要作用。

阿里巴巴与杭州市政府合作,通过整合人工智能技术的交通信号灯,使城市交通更加智能化,减少了拥堵,在特定区域提升了11%的交通流量。吉利汽车搭建新一代核心业务系统整体上云,实现了传统业务的在线化和数据化运营,助力吉利汽车引领汽车行业的“互联网+”潮流。

最近,国防科技大学相关团队研发的医疗机器人对外公布。该机器人通过运用超级计算机的大数据运算以及人工智能技术,可以提供挂号、诊疗、体检等一体化智能医疗服务,包括智能挂号、智能诊疗、智能健康体检三大功能系统。百度在医疗O2O智能分诊、人工智能参与的智能问诊、基因分析和精准医疗、基于大数据的新药研发等四方面进行研发,期望把几十万台服务器的运算能力和最先进的算法,运用到医疗和健康领域。

近两年来,长虹、美的、格力、格兰仕等家电公司都在向智能制造转型,在机器人生产及应用领域进行布局。同时,几乎所有的家电厂商都立足“Smart Home”,将人工智能和智慧家庭更紧密地结合在一起。

不过,接受采访的专家表示,大多数传统行业的业务需求与人工智能的前沿科技成果之间尚存在不小距离。面向普通消费者的移动互联网应用与人工智能技术之间的结合尚处在探索阶段。

关键字:AI 引用地址:中国AI产业链:芯片、语音识别、无人驾驶成产业热点

上一篇:2020年35%智能机将具AI!可实时翻译、拍摄最佳相片
下一篇:杀死iPhone 8的不是别人,就是X

推荐阅读最新更新时间:2024-05-03 17:26

紫光正式签约重庆 打造千亿“智能安防+人工智能”生态圈
3月27日消息,重庆市经济和信息化委员会、重庆两江新区管委会与紫光集团正式签约,设立紫光智能安防+人工智能产品基地、紫光金融信息服务有限公司、紫光云(南方)总部、数字重庆技术有限公司。这标志着重庆市人民政府与紫光集团的战略合作,进入了全面落地实施阶段。 据悉,紫光智能安防+人工智能产品基地项目,将作为相关智能安防+人工智能产品及解决方案的全球研发中心和运营及结算总部,以全球市场为目标,开展新型公共安全融合解决方案、智能安防与视频监控解决方案、云计算与视频共享平台、大数据与人工智能、物联网等相关产业的研发和产业化,打造千亿“智能安防+人工智能”生态圈,将重庆建设成为具有国际竞争力的公共安全融合技术和智能安防的研发中心和产业基地。
[半导体设计/制造]
AI时代,如何避免成为“无用阶级”?
提起尤瓦尔·赫拉里来,在中国或许还未达到无人不知的程度,但凭借《人类简史》系列三部曲,让这位以色列历史学家一跃成为爱因斯坦之后第二有名的犹太人。 10月下旬,这位学术男神现身中信出版社组织的2018信睿论坛,带来他三部曲的最后一本——《今日简史》。本次论坛的主题为“新技术革命与人类共同未来”,赫拉里从这里引出了“无用阶级”的概念。 技术“把人变成神” 赫拉里认为,21世纪人类面临的三大挑战,除了战争的可能回归和环境的崩溃,还有技术的颠覆力量。目前技术已经“把人变成了神”,人工智能(AI)和生物技术正在赋予人类神的能力,人类事实上已经可以设计和创造生命。 21世纪经济最主要的产品不是汽车、武器或日用品,而可能是人工大脑、人造器官
[机器人]
海康威视AI网络云台摄像机拆解:卖599凭的是什么?
本期硬核拆评拆解产品:海康威视旗下的萤石 AI 网络云台摄像机。 看过我之前视频的小伙伴可能有这样的疑问,前几期我已经拆过一个萤石的网络摄像头(萤石 C2c IP 摄像头拆解:神秘芯片加持,让你破解不了的方案?),为何再来一次?拿钱了?当然是 no! 首先,两者定位不同,前一次拆解的是入门款,这个是高端款;其次,功能不同,前一个仅仅是基础的监视,这个是监视加 AI 人脸检测等等等等功能;再者,性能也不同,前者只能看完整的画面,但是对于细节模糊不清;而这个可以自动对面部追踪放大看清楚细节,尤其是人脸,所以,相对于前一期拆解的摄像头,这个无论是在功能还是性能上都是碾压的,当然价格上同样碾压,599 元。 在普遍
[嵌入式]
海康威视<font color='red'>AI</font>网络云台摄像机拆解:卖599凭的是什么?
大数据提升中国机器人“比较优势” 警惕AI扎堆及被“神化”
从百度“阿波罗计划”百亿掘金无人驾驶,到“阿尔法狗”战胜世界围棋第一人柯洁,再到谷歌实时翻译耳机横空出世……人工智能(AI)无疑是当下最热门的科技话题及投资热土。 作为互联网应用创新大国,近年来,中国在人工智能领域的发展尤为迅猛。在无人驾驶、金融服务、语音识别等领域的创新应用层出不穷,在国际上培育起了特色鲜明的优势。不过业内人士提醒,这一新兴产业的发展存在过度扎堆及被“神化”的倾向,方向把握不当甚至会在国际上“掉队”。相关专家建议,我国应加快培育对外核心竞争力,树立该领域产业发展的企业主体意识,围绕企业创新做文章,放大既有优势,加速人工智能产业对国外实现“换道超车”。 AI走向2.0时代巨头竞相圈地 “经过多年的培育,人工智能
[机器人]
不惧危险环境,人工智能配网带电作业机器人勇担重任
时至今日,工业、农业、居民用电量迅速增多,风力发电、水力发电等也成为了电力供应的主要方式。除了保障电力的稳定输送外,对电力进行巡检和抢修也考验着电力服务商的经营智慧。 在传统电力运维模式已不能适应智能电网快速发展需求的大背景下,借助智能机器人、巡检无人机、智能摄像头等智能装备来监测区域电力输送状况,并及时解决输电线路搭建、输电设备停运等问题已经成为电力行业发展的重要趋势。而将机器人技术与电力技术相融合,通过智能机器人实现无人化电力运检已经成为智能电网的一大特点。 据国家电网有限公司消息,日前第四代人工智能配网带电作业机器人在天津市滨海新区完成首次作业后,全面投入配网运行。至此,国网公司已成功完成单臂人机协同、单臂辅助自主、双臂自主
[机器人]
韩国利用人工智能方法分析半导体材料 误差小于1%
自旋电子学涉及电子的内在自旋和电子工程领域,目前相关研究正在积极进行,以解决现有硅半导体存在的集成局限性,开发下一代超低功耗和高性能半导体。磁性材料是开发自旋电子器件(如MRAM磁阻随机存取存储器)最常用的材料之一。因此,通过分析磁哈密顿量及其参数来准确识别磁性材料的性质,如热稳定性、动态行为和基态构型等,具有重要意义。 (图片来源:phys.org) 以前,为了更准确深入地了解磁性材料的性质,需要通过各种实验直接测量磁哈密顿参数,这一过程需要耗费大量时间和资源。据外媒报道,为了克服这些困难,韩国的研究人员开发了一种人工智能(AI)系统,可以实时分析磁性系统。 韩国科学技术研究院(KIST)宣布,其联合研究团队开发了
[汽车电子]
韩国利用<font color='red'>人工智能</font>方法分析半导体材料 误差小于1%
研华全新Edge AI加速卡,赋予边缘人工智能提供强劲算力
2020年,物联网解决方案提供商研华科技(股票代码:2395)为其VEGA-300系列产品线推出新品VEGA-340 Edge AI加速卡。 自2019年研华发布VEGA-300系列以来,产品引起良好市场反响,而2020年推出的VEGA-340产品性能较前一代产品有明显提升。VEGA-340搭载8颗Intel Movidius™ Myriad™ X VPU,PCIe x4,可提供强大的图形图像计算能力,满足医疗和AOI应用等复杂计算任务的AI要求。 研华提供了Edge AI Suite软件工具包,该工具包结合了Intel®OpenVINO™发行版并提供了友好的用户图形界面。 客户可以使用VEGA-340和Edge AI套件内置的训
[物联网]
研华全新Edge <font color='red'>AI</font>加速卡,赋予边缘<font color='red'>人工智能</font>提供强劲算力
英特尔首发大型神经拟态系统Hala Point,推进“绿色AI”发展
英特尔发布了代号为Hala Point的大型神经拟态系统。Hala Point基于英特尔Loihi 2神经拟态处理器打造而成,旨在支持类脑AI领域的前沿研究,解决AI目前在效率和可持续性等方面的挑战。在英特尔第一代大规模研究系统Pohoiki Springs的基础上,Hala Point改进了架构,将神经元容量提高了10倍以上,性能提高了12倍。 英特尔研究院神经拟态计算实验室总监Mike Davies 表示:“目前,AI模型的算力成本正在持续上升。行业需要能够规模化的全新计算方法。为此,英特尔开发了Hala Point,将高效率的深度学习和新颖的类脑持续学习、优化能力结合起来。我们希望使用Hala Point的研究能够在大规
[嵌入式]
英特尔首发大型神经拟态系统Hala Point,推进“绿色<font color='red'>AI</font>”发展
小广播
最新手机便携文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved