前不久比亚迪公司宣布投入巨资布局第三代半导体材料SiC(碳化硅),并整合材料、单晶、外延、芯片、封装等SiC基半导体产业链,致力于降低SiC器件的制造成本,加快其在电动车领域的应用。目前比亚迪公司已成功研发了SiC MOSFET,并期望之后应用于旗下的电动车中,实现SiC基车用功率半导体对硅基IGBT的全面替代,将整车性能在现有基础上提升10%。
在电子领域,MOSFET(场效应晶体管)作为功率开关广泛应用于开关电源、放大器等电子设备中,同时也是硬件设备发热和功率损耗的一大来源。随着新式材料SiC的出现,由于其击穿场强约为Si的10倍,同时具有高热导率、抗辐射等优点,因此可广泛应用于大功率,高温高频半导体器件如MOSFET中。当MOSFET应用SiC材料后,其开关损耗可大幅降低,适用于更高的工作频率,并大大增强高温稳定性,另一方面由于器件本身沟道密度低的特性,可以有效减小器件面积,增加芯片的集成度。然而基于沟槽型SiC的MOSFET普遍存在反型层迁移率低以及栅极氧化层使用寿命短的问题,一定程度限制了SiC的大规模使用。
针对这一缺陷,比亚迪公司早在2017年8月25日就提出一项名为“MOSFET及制备方法、电子设备、车辆”的发明专利(申请号:201710743941.8),申请人为比亚迪股份有限公司。
此专利提出一种基于SiC形成的MOSFET及其制备方法,并应用于电子设备和车辆中,可增加了该电子设备的反应速度以及使用寿命,并提升车辆的使用性能。
图1 MOSFET结构示意图
此专利提出的MOSFET结构如图1所示,包括衬底100、漂移层200、栅极氧化层300、栅极10、源极区400、接触区500、阱区600以及漏极20。其中,漂移层200设置在衬底100的上方;漂移层200中设置有栅槽,栅极氧化层300设置在栅槽的底面以及侧壁上,栅极10填充于栅槽中,且位于栅极氧化层300远离漂移层200的一侧;源极区400以及接触区500设置在漂移层200的顶部,并位于栅槽的一侧,源极区400靠近栅槽设置;阱区600设置在漂移层200中,且位于源极区400以及接触区500的下方;漏极20设置在衬底100的下方。由此结构进行分析,可以提高器件沟道迁移率,减小栅极氧化层的电场。
由于基于SiC的MOSFET中栅极氧化层/SiC界面存在大量界面陷阱,导致栅极氧化层与SiC界面之间有电流传导,造成反型层迁移率低。此外,基于SiC的MOSFET的击穿场强比基于Si的MOSFET的大十倍左右,所以在对器件施加大电压时,对栅极氧化层施加的电场强度也将更大,因此,新式MOSFET开启较慢且沟道迁移率较低,从而使得器件反型层迁移率较低。而当MOSFET关断时,栅极10和漏极20之间会产生高的电压差,并导致栅极氧化层300被破坏,进而影响器件的性能和使用寿命。
在本发明中,以p型MOSFET为例,令阱区的一部分设置在栅槽的下方,从而可以将原本位于栅极氧化层以及漂移区之间的电场,转移至阱区以及漂移区之间形成的PN结的界面处,进而可以降低栅极氧化层附近的电场强度,防止栅极氧化层被击穿。同时,采用倾斜离子注入的方法,可以在栅槽的侧壁两侧、底部同时形成分隔的阱区,使得栅槽以及阱区之间保留有部分n型沟道区,由此形成了沟道电子的积累层,提高了沟道迁移率。
MOSFET的制备方法如图2所示。首先在衬底上通过外延生长形成漂移层,并在漂移层中通过刻蚀工艺设置栅槽,然后在漂移层中以倾斜离子注入的方式形成阱区,并在漂移层顶部设置源极区以及接触区,紧接着在栅槽的底面以及侧壁上形成栅极氧化层,最后在栅槽中设置栅极,在衬底下方设置漏极,形成最终的MOSFET器件。
随着汽车日渐走向智能化、联网化与电动化的趋势,加上5G商用在即,SiC功率半导体市场的商业产值逐渐增加,但也面临着诸多技术上的挑战。比亚迪公司深耕汽车电子领域中,并不断实现技术创新,在此项专利中提出了SiC MOSFET制备方法,增加了该电子设备的反应速度以及使用寿命,同时应用于旗下电动车,提升车辆使用性能。
关于嘉德
深圳市嘉德知识产权服务有限公司由曾在华为等世界500强企业工作多年的知识产权专家、律师、专利代理人组成,熟悉中欧美知识产权法律理论和实务,在全球知识产权申请、布局、诉讼、许可谈判、交易、运营、标准专利协同创造、专利池建设、展会知识产权、跨境电商知识产权、知识产权海关保护等方面拥有丰富的经验。
上一篇:联发科搭载MT6765+5000mAh大电池,华为畅享10e正式发布
下一篇:中国电科山西碳化硅材料产业基地投产了
推荐阅读最新更新时间:2024-10-29 19:02
- 消息称苹果、三星超薄高密度电池均开发失败,iPhone 17 Air、Galaxy S25 Slim手机“变厚”
- 美光亮相2024年进博会,持续深耕中国市场,引领可持续发展
- Qorvo:创新技术引领下一代移动产业
- BOE独供努比亚和红魔旗舰新品 全新一代屏下显示技术引领行业迈入真全面屏时代
- OPPO与香港理工大学续约合作 升级创新研究中心,拓展AI影像新边界
- 古尔曼:Vision Pro 将升级芯片,苹果还考虑推出与 iPhone 连接的眼镜
- 汇顶助力,一加13新十年首款旗舰全方位实现“样样超Pro”
- 汇顶科技助力iQOO 13打造电竞性能旗舰新体验
- BOE(京东方)全新一代发光器件赋能iQOO 13 全面引领柔性显示行业性能新高度
- 使用 ON Semiconductor 的 LA5627W 的参考设计
- OM14500-TJA1101:汽车以太网100BASE-T1 PHY客户评估板
- LT3663EDCB-3.3、1.2V 降压转换器的典型应用
- LTC1393 的典型应用 - 具有 SMBU 接口的单端 8 通道 / 差分 4 通道模拟多路复用器
- 使用 Analog Devices 的 LTC3130EUDC 的参考设计
- 【创意PCB】基于MSP430的奥运花样灯
- BD48xxx系列BD48L55电压检测IC的典型应用
- 锁相环ADF4350
- 使用 Analog Devices 的 LT8609SIV 的参考设计
- Flipper Zero :基于STM32W55B的开源极客多功能工具
- 2016年是德印象测试微视频网络竞选(大中国区)
- 已结束|TI Sitara™ 产品在多协议工业通信中的应用
- 已结束|TI Sitara™ 产品在多协议工业通信中的应用
- 看MCU精品课程,让你立马变身考试达人!
- 浪漫爱情季:TI MSP430,狠狠爱!
- 泰克多媒体总线专题之《DDR Memory》,下载赢好礼!
- 【 有奖直播】 掌握潮流~TI DLP®技术在汽车上的创新及全新应用
- 2019东芝PCIM在线展会:会一会 电力领域中的高能晶体管们
- 1月22日下午14:00Mouser携手Maxim邀您观看有奖直播:深入浅出可穿戴健康监测
- 赢京东卡 室内空气隐患大作战——英飞凌XENSIV™PAS CO2传感器