技术讲座:用氧化镓能制造出比SiC性价比更高的功率元件(一)

最新更新时间:2012-04-22来源: OFweek 关键字:SiC  功率元件  GaN  导通电阻 手机看文章 扫描二维码
随时随地手机看文章

  与SiC和GaN相比,β-Ga2O3有望以低成本制造出高耐压且低损失的功率半导体元件,因而引起了极大关注。契机源于日本信息通信研究机构等的研究小组开发出的β-Ga2O3晶体管。下面请这些研究小组的技术人员,以论文形式介绍一下β-Ga2O3的特点、研发成果以及今后的发展。

  我们一直在致力于利用氧化镓(Ga2O3)的功率半导体元件(以下简称功率元件)的研发。Ga2O3与作为新一代功率半导体材料推进开发的SiC和GaN相比,有望以低成本制造出高耐压且低损失的功率元件。其原因在于材料特性出色,比如带隙比SiC及GaN大,而且还可利用能够高品质且低成本制造单结晶的“溶液生长法”。

  在我们瞄准的功率元件应用中,使用Ga2O3试制了“MESFET”(metal-semiconductorfield effect transistor,金属半导体场效应晶体管)。尽管是未形成保护膜(钝化膜)的非常简单的构造,但试制品显示出了耐压高、泄漏电流小的特性。而使用SiC及GaN来制造相同构造的元件时,要想实现像试制品这样的特性,则是非常难的。

  虽然研发尚处于初期阶段,但我们认为Ga2O3的潜力巨大。本论文将介绍Ga2O3在功率元件用途方面的使用价值、研发成果,以及今后的目标等。

  比SiC及GaN更为出色的性能

  Ga2O3是金属镓的氧化物,同时也是一种半导体化合物。其结晶形态截至目前(2012年2月)已确认有α、β、γ、δ、ε五种,其中,β结构最稳定。与Ga2O3的结晶生长及物性相关的研究报告大部分都使用β结构。我们也使用β结构展开了研发。

  β-Ga2O3具备名为“β-gallia”的单结晶构造。β-Ga2O3的带隙很大,达到4.8~4.9eV,这一数值为Si的4倍多,而且也超过了SiC的3.3eV 及GaN的3.4eV(表1)。一般情况下,带隙大的话,击穿电场强度也会很大(图1)。β-Ga2O3的击穿电场强度估计为8MV/cm左右,达到Si的20多倍,相当于SiC及GaN的2倍以上。

  

  

       

  图1:击穿电场强度大

  带隙越大,击穿电场强度就越大。β-Ga2O3的击穿电场强度为推测值。

  β-Ga2O3在显示出出色的物性参数的同时,也有一些不如SiC及GaN的方面,这就是迁移率和导热率低,以及难以制造p型半导体。不过,我们认为这些方面对功率元件的特性不会有太大的影响。

  之所以说迁移率低不会有太大问题,是因为功率元件的性能很大程度上取决于击穿电场强度。就β-Ga2O3而言,作为低损失性指标的“巴利加优值(Baliga’s figure of merit)”与击穿电场强度的3次方成正比、与迁移率的1次方成正比。因此,巴加利优值较大,是SiC的约10倍、GaN的约4倍。

  一般情况下,导热率低的话,很难使功率元件在高温下工作。不过,工作温度再高也不过200~250℃,因此实际使用时不会有问题。而且封装有功率元件的模块及电源电路等使用的封装材料、布线、焊锡、密封树脂等周边构件的耐热温度最高也不过200~250℃程度。因此,功率元件的工作温度也必须要控制在这一水平之下。

  另外,关于难以制造p型半导体这一点,使用β-Ga2O3来制作功率元件时,可以将其用作N型半导体,因此也不是什么问题。而且,通过掺杂Sn及Si等施主杂质,可在电子浓度为1016~1019cm-3的大范围内对N型传导特性进行控制(图2)。

  

  图2:N型传导特性的控制范围大

  使用β-Ga2O3时,可在大范围内控制N型传导性。实际上,通过掺杂施主杂质,可在1016~1019cm-3范围内调整电子密度。

  导通电阻仅为SiC的1/10

  β-Ga2O3由于巴利加优值较高,因此理论上来说,在制造相同耐压的单极功率元件时,元件的导通电阻比采用SiC及GaN低很多(图3)。降低导通电阻有利于减少电源电路在导通时的电力损失。

  

  图3:导通电阻比SiC及GaN小

  在相同耐压下比较时,β-Ga2O3制造的单极元件,其导通电阻理论上可降至使用SiC时的1/10、使用GaN时的1/3。图中的直线与巴加利优值的倒数相等。直线位置越接近右下方,制成的功率元件性能就越出色。

  使用β-Ga2O3的功率元件不仅能够降低导通时的损失,而且还可降低开关时的损失。因为从理论上说,在耐压1kV以上的高耐压用途方面,可以使用单极元件。

  比如,设有利用保护膜来减轻电场向栅极集中的“场板”的单极晶体管(MOSFET),其耐压可达到3k~4kV。

  而使用Si的话在耐压为1kV时就必须使用双极元件,即便使用耐压公认较高的SiC,在耐压为4kV时也必须使用双极元件。双极元件以电子和空穴为载流子,因此与只以电子为载流子的单极元件相比,在导通及截止的开关动作时,沟道内的载流子的产生和消失会耗费时间,损失容易变大。

  比如Si,在耐压1kV以上的用途方面通常是晶体管使用IGBT,二极管使用PIN二极管。

  SiC的话,耐压4kV以下用途时晶体管可使用MOSFET等单极元件,二极管可使用肖特基势垒二极管(SBD)等单极元件。但在耐压4kV以上时导通电阻超过10mΩcm2,单极元件不具备实用性。因此必须使用双极元件。

关键字:SiC  功率元件  GaN  导通电阻 编辑:探路者 引用地址:技术讲座:用氧化镓能制造出比SiC性价比更高的功率元件(一)

上一篇:用开关稳压器为高速ADC供电可节约能耗
下一篇:技术讲座:用氧化镓能制造出比SiC性价比更高的功率元件(二)

推荐阅读最新更新时间:2023-10-18 16:40

估算2021年SiC的用量和2022年的增长
我想在周末估算下SiC在车辆上的使用,通过这个数据能让我们粗略评估出未来的使用量。可能估算比较简单,主要是从这个数据里面做一些推演。 我认为智能电动汽车硬件的三个基本要素为电芯、功率芯片和高算力芯片,这是三根最基本的柱子。顺着这个思路,我们可以对英飞凌、安森美和Wolfspeed等几家公司做一些判断。 目前使用SiC的车企和车辆 为什么使用SiC器件来做逆变器的核心,主要是和电池和电机功率有关系,在《Silicon Carbide in the UK Electric Vehicles and Beyond》一文里面有这么一张图。 图1 目前全球范围内,SiC的器件主要应用为: Tesla:全系标配基
[汽车电子]
估算2021年<font color='red'>SiC</font>的用量和2022年的增长
欧司朗联合GaN System共同开发适用于LiDAR的激光驱动技术
欧司朗光电半导体和GaN System公司日前宣布共同开发了激光驱动技术,可实现更长距离和更高分辨率的LiDAR。 LiDAR技术目前最主要的一个问题是它无法传输短脉冲激光的同时保持高峰值功率,只有这样LiDAR才可以具有更远距离和更高分辨率。 为了满足这一需求,欧司朗与GaN Systems合作开发了一个脉冲上升时间为1纳秒的激光驱动器,同时以40 A驱动四个通道,提供480 W的峰值功率。 同时,可以在低占空比下调制该峰值功率,以便为新的LiDAR可在更远距离产生高分辨率的3D点云数据。
[汽车电子]
科锐推出150毫米 4H N型碳化硅外延片
2012年9月11日,中国上海讯 — LED领域的市场领先者科锐公司(Nasdaq: CREE)日前宣布推出高品质、低微管的150毫米 4H N型碳化硅外延片。科锐通过推出更大直径的外延片,从而继续引领碳化硅材料市场的发展。此项最新技术能够降低设备成本,并能够利用现有150毫米设备工艺线。新型150毫米外延片拥有高度均一的厚度为100微米的外延层,并已开始订购。 碳化硅是一种高性能的半导体材料,被广泛地应用在照明、功率器件和通讯器件产品的生产中,包括发光二级管(LED)、功率转换器件以及无线通讯用射频功率晶体管等。150毫米单晶碳化硅衬底能够帮助降低成本、提高产量,同时带动碳化硅产业的持续增长。 科锐材料产品经理 Vi
[电源管理]
IGBT将成车用电子界的CPU 台系功率元件布局全面启动
车用绝缘闸双极电晶体(IGBT)已经成为国际IDM大厂三菱(Mitsubishi)、英飞凌(Infineon)等积极投入的领域,厂商认为,未来油电混合、纯电动车时代,IGBT元件以及模组的重要性,将成为车用电子领域中,如同电脑中CPU的角色。   尽管台系厂商投入稍慢,不过二极体厂商强茂、晶圆代工厂商茂硅、汉磊以及功率元件、模组封装导线架厂商界霖、顺德等,都已经看到IGBT的潜力,第一步先行切入变频家电,进一步切入工控,未来更看好车用领域需求。   二极体厂商中,强茂已经公开揭露IGBT策略布局。强茂握有来自于晶圆代工厂茂硅的奥援,茂硅预计6月将可以小量量产IGBT元件,2019年量产能力将更为提升,茂硅为台系晶圆代工厂中,与工研
[半导体设计/制造]
宏光半导体公布2022年全年业绩 产品研发领域实现突破性进展
宏光半导体公布2022年全年业绩 产品研发领域实现突破性进展 持续加大力度完善第三代半导体GaN产业链 香港, 2023年4月3日 - (亚太商讯) - 宏光半导体有限公司(「宏光半导体」,连同其附属公司统称「集团」;)宣布其截至2022年12月31日止年度(「年内」)之经审核全年业绩。年内,宏光半导体积极发展第三代半导体新业务,进一步加快氮化镓(「GaN」)的技术研发和应用步伐,并实现多个重要里程碑。 本年度,由于第三代半导体业务仍处于投放及研发阶段,集团的收益贡献主要来自LED灯珠业务。 2019冠状病毒病(「新冠肺炎」或「疫情」)持续反复对中国经济造成严重负面影响;因各地实施封城措施导致工厂临时关闭,使集团
[半导体设计/制造]
英飞凌将与松下电器联袂 双双推出常闭型600V GaN功率器件
2015年3月20日,德国慕尼黑和日本大阪讯 英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)和松下电器公司(TSE代码:6752)宣布,两家公司已达成协议,将联合开发采用松下电器的常闭式(增强型)硅基板氮化镓(GaN)晶体管结构,与英飞凌的表贴(SMD)封装的GaN器件。在此背景下,松下电器向英飞凌授予了使用其常闭型GaN晶体管结构的许可。按照这份协议的规定,两家公司均可生产高性能GaN器件。由此带来的益处是客户可以从两条渠道获得采用可兼容封装的GaN功率开关。迄今为止,没有任何其他硅基板GaN器件提供了这样的供货组合。双方商定不披露任何其他合同细节。 作为新一代化合物半导体技术,
[半导体设计/制造]
意法半导体第三代碳化硅,推动电动汽车和工业应用发展
意法半导体推出第三代碳化硅产品,推动电动汽车和工业应用未来发展 意法半导体最新一代碳化硅 (SiC) 功率器件,提升了产品性能和可靠性,保持惯有领先地位,更加适合电动汽车和高能效工业应用 持续长期投资 SiC市场,意法半导体迎接未来增长 中国,2021年12月10日——服务多重电子应用领域的全球半导体领导者意法半导体(STMicroelectronics,简称ST;)推出 第三代STPOWER碳化硅 (SiC) MOSFET晶体管 ,推进在电动汽车动力系统功率设备的前沿应用,及在其他以高功率密度、高能效、高可靠性为重要目标的场景应用。 作为 SiC 功率 MOSFET市场的领导者,意法半导体整合先进的设计技术
[半导体设计/制造]
意法半导体第三代<font color='red'>碳化硅</font>,推动电动汽车和工业应用发展
东芝公司推出用于光伏逆变器的碳化硅MOSFET
东芝公司为逆变器和储能系统开发了2200 V碳化硅(SiC)金属氧化物半导体场效应晶体管(MOSFET),以帮助逆变器制造商减小其产品的尺寸及重量。 图片:Toshiba 日本电子制造商东芝公司推出了一种基于碳化硅(SiC)的新型金属氧化物半导体场效应晶体管(MOSFET),主要应用于太阳能逆变器和电池存储系统。 该公司表示,新的MOSFET可能有助于逆变器制造商减小其产品的尺寸及重量。 该公司还提到:“高频运行可以减少其他系统组件的体积和重量,如散热器和过滤器等。” 新产品包含一个2200 V肖特基势垒二极管(SBD),主要应用于1500 V(直流电)两电平逆变器。据制造商介绍,两电平设备相比三电平逆变器,具有更少的开关模块,
[新能源]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved