基于单片机设计的简易信号源

发布者:LuckyDaisy最新更新时间:2012-03-08 来源: 微计算机信息 关键字:单片机  数字频率合成  信号源  多周期 手机看文章 扫描二维码
随时随地手机看文章

1. 引言
    信号发生器在教学、试验、测控等各个领域有十分广泛的应用,其输出信号的频率范围覆盖了各个频段,从甚低频到甚高频,操作方式也从手动旋钮到程控,产生的波形从传统的正(余)弦波和脉冲波形,发展到现在能产生各种任意波形。以前的信号发生器往往独占一个机箱,而现在的一些应用中,它只是一块插在计算机中的扩展卡,还有一些信号发生器设计成一个独立的小模块,通过RS-232C或RS-422,RS-485等串行总线和计算机连接。
    其实,在许多固定的控制应用中,只要求信号发生器产生单一波形,或可数的几个波形。如果仅仅要求产生单一的正(余)弦波或者脉冲波形,可以利用传统的振荡器电路。当信号频率有所选择时,问题仍然比较简单。但若产生的信号波形比较复杂时,电路的设计也同样变得很复杂。加之传统振荡器电路由于有较大的温度漂移,需要较长的预热时间,为达到较高的频率精度,需仔细调节电路各个参数。
    数字频率合成技术的采用,大大简化了信号发生器的设计。但在某些特定情况,需要的仅仅是几个单独的波形,这时我们可以使用单片机和DAC芯片,用十分简单的电路产生所需要的波形。

2. 电路设计及编程考虑
    单片机简易信号发生器电路框图如图1,仅由一片AT89C2051单片机,一片DAC0832和由运放组成的低通滤波器组成。AT89C2051内部有 2KB的FLASH存储器,可以保存运行程序和波形参数,128字节的RAM可以用于存放波形参数。由于采用了数字合成技术,可以产生各种简单或复杂的波形。


     工作过程说明如下;(1)决定产生的信号波形;通电稳定工作以后,单片机首先读取P3.0和P3.1引脚信号,决定程序应跳转的地址。每个跳转地址有一个输出波形。(2)将保存在FLASH中的样本数据送往DAC0832,供其转换成模拟电压。
    首先应将波形参数转换成样本数据。假若每周期有N个样本数据,则第K个样本数据的计算方法为:
    DK=127(1+SIN(2πK/N)  K=0,1,2,……N-1
    由于在实际产生波形的过程中,数据由运行程序逐个取得送出,在产生周期波时是一个循环过程。因此必须考虑程序取数、送数、循环等操作的时间开销。对于 MCS51系列单片机,在晶振频率为12MHz时,每条指令的执行时间为1~2μs。为了使波形足够光滑,每周期的点数应尽可能多,这样要求单片机发送样本数据的速率尽量快。由于送数周期的限制,在增加样本点数时,输出信号频率会降低。同时从程序存储器空间取数时需要较长的时间,当样本数据的个数不多时,可以把样本数据先移到RAM中,程序执行时直接从RAM中取数送往DAC,就能增加发送样本数据的速率。
    下面以产生单一4800Hz正弦波为例,说明程序设计过程。参数N的计算见后面的说明。
 ORG    0000H
         MOV    R0,#0
         MOV    R1,#4
         MOV    R2,#124
         MOV    DPTR,#200H
         MOV     A,#0
MOVD:  MOVC    A,@A+DPTR  ;将样本数据从FLASH
         MOV     @R1,A   ;移到内部RAM中,
         INC     R0   ;可以减少送数时间
         INC R1
         MOV     A,R0
         DJNZ    R2,MOVD
         MOV     R0,#04
DOUT:   MOV     A,@R0   ;轮流送数到DAC
         MOV     P1,A
         INC  R0
         CJNE    R0,#128,DOUT
         MOV     P1,#128  ;从起点开始重新送样本数据
         MOV     R0,#04  ;
         SJMP  DOUT   ;送数循环结束
      ;
 ORG 0200H   ;样本数据表
 DB 0147
 DB 165
 ……   
    以上程序中,DOUT标号开始的一段循环程序送样本数据。该段循环程序指令经过精心选择,N个样本数据共用4条指令,执行时间为5μs。但对4800 Hz的信号频率,信号周期为208.3333μs,计算得到样本数据的个数N=208.3333/5=41.6667。由于样本数据的个数不能为小数,可以考虑采用4舍5入,以得到最接近的信号频率。因此取样本个数为42,但信号周期变为210μs,信号频率为4762Hz,频率误差很大,达不到使用要求。
    为此,可采用多周期综合技术。多周期综合的方法就是在计算样本数据时,将M个周期一并考虑。即N个样本数据代表了M个信号周期的波形,使每个周期的样本数与要求值最接近。计算公式如下:
DK=127(1+SIN(2лMK/N)    K=0,1,2,3……N-1
    为此,需合理确定N和M的值。
    M的值可如下确定;取单周期样本数据个数的小数部分,除1的结果既为M。对f0=4800Hz,可知M恰好等于3。
    下面计算N;已知每个样本数据需要5μs,样本周期数为3,信号频率为4800 Hz,则
             N=3/4800*1000000/5=125
    由此可知样本数据的计算公式:
    DK=127(1+SIN(6л/125))  K=0,1,2……124
    实用中,用该信号源产生了4800Hz正弦波,400Hz正弦波、480Hz正弦波和1000Hz方波四种波形。400Hz、480Hz正弦波和1000Hz方波的波形参数计算此处略。实测表明四种信号的频率误差都小于0.5Hz。
如果信号频率比较低,样本数据很多,就不需要把样本数据先移到RAM中,而直接从FLASH中取得样本数据送往DAC。对正弦波来说,当每周期有20个以上的样本数据时,就有比较好的波形。对于矩形波来说,每周期只需要2个样本数据。

3. 小结
    以上电路虽然简单,但有比较精确的波形。由于波形参数完全由软件预先设定,除了产生正弦波、方波以外,还能产生梯形波或sin(x)/x等形状复杂的波形。可以将电路设计成嵌入式结构,从而在一些工业生产现场得到应用。

参考文献
1  余永权.ATMEL89系列(MCS-51兼容)FLASH单片机原理及应用.电子工业出版社.1997年
2 蒋焕文,孙续.电子测量.中国计量出版社.1988年

关键字:单片机  数字频率合成  信号源  多周期 引用地址:基于单片机设计的简易信号源

上一篇:基于单片机的智能终端中汉字显示的处理
下一篇:80C196KC-ADMC401双CPU接口电路设计/其应用

推荐阅读最新更新时间:2024-03-16 12:55

AVR单片机-数码管1
八段数码管由八段LED构成 , 各LED阴极或阳极并在一起,称为 位选线 :共阴、共阳 。 其余8个引脚各自引出,称为 段选线 ,各段可以分别控制 。 使用LED数码管时,要注意区分这两种不同的接法。为了显示数字或字符,必须对数字或字符进行编码。七段数码管加上一个小数点,共计8段。因此为LED显示器提供的编码正好是一个字节。 共阳极数码管译码表: 0x3f , 0x06 , 0x5b , 0x4f , 0x66 , 0x6d , 0   1 2   3 4 5 0x7d , 0x07 , 0x7f , 0x6f , 0x77 , 0x7c , 6 7 8 9 A
[单片机]
AVR<font color='red'>单片机</font>-数码管1
应用单片机的控制电路相关情况解析方案
引 言 远程控制技术又称为遥控技术,是指实现对被控目标的遥远控制,在工业控制、家用电器、无线电运动以及儿童玩具等领域都有非常广泛的应用。遥控技术可以分为单通道遥控和多通道遥控,也可以分为开关型遥控和比例型遥控。 本文主要介绍了使用到单片机部分的控制电路,包括发射机电路和接收机电路。发射机采用电位器分压作为比例控制信号,由4路A/D电路转换为数字信号,各个通道数字信号连同两路开关量由单片机进行多通道编码,编码信号由串行口送出,最后由发射模块发射。接收机主要负责把收到的信号放大并从中解调出编码信号,最后由伺服机把接收机收到的电信号转换成相应的机械动作,由此实现方向和速度的控制。 外观上,在遥控器的发射端应该有带旋钮的比例表盘,把
[单片机]
应用<font color='red'>单片机</font>的控制电路相关情况解析方案
基于CPLD及DDS的正交信号源滤波器的设计
1 引言 由于传统的多波形函数信号发生器需采用大量分离元件才能实现,且设计复杂,这里提出一种基于CPLD的多波形函数信号发生器。它采用CPLD作为函数信号发生器的处理器,以单片机和CPLD为核心,辅以必要的模拟和数字电路,构成的基于DDS(直接数字频率合成)技术、波形稳定、精度较高的多功能函数信号发生器。 2 系统设计 图1给出系统设计框图,该系统设计主要由CPLD电路、单片机电路、键盘输入液晶显示输出电路以及D/A转换电路和低通滤波器等电路组成。 2.1 频率合成器 该系统设计采用直接数字式频率合成DDS(Direct Digital Frequency Synthesis)技术,采用ROM存储所需的量化
[测试测量]
基于CPLD及DDS的正交<font color='red'>信号源</font>滤波器的设计
PIC单片机在线编程调试中的一些问题
1 在线串行编程   1.1在线串行编程接口   带有Flash闪速存储器的PIC单片机产品一般都具有在线串行编程功能,只需要5根引线就可以把程序下载到单片机的Flash程序存储器中。这5根线的排列顺序是MCLR/Vpp、Vdd、Vss、PD(或PGD)和PC(或PGC),图1是PIC单片机在线串行编程接口图。              图1PIC单片机在线串行编程接口   1.2引脚含义   上述5根引线的具体含义是:MCLR/Vpp——编程电压(对于PIC单片机一般为13 V左右);Vdd——编程电源(5 V);Vss——地;PD——编程数据信号;PC——编程时钟信号。   有了这个编程连接电路,
[单片机]
PIC<font color='red'>单片机</font>在线编程调试中的一些问题
PSoC单片机及其茌燃气变频输配与流量计量中的应用
摘要:介绍了PSoC单片机实现的燃气变频输配与精确计量。从硬软件设计的简洁易用性、系统的稳定可靠性、开发生产成本的低廉性等方面,重点阐述了PSoC单片机测控体系的巨大优势。 关键词:PSoC 变频输配 测量控制 流量计算 在燃气的变频输配与计量方面,以普通单板机/单片机组成的大流量范围的燃气计量仪表和工控机实现的一器多控自动变频调速输配系统广为应用,有力地提高了计量精度并节约了大量的能源。但是用“单板机/单片机+外围器件”计量燃气,系统复杂,稳定性差;用工控机变频输配燃气,造成资源浪费。从提高系统稳定可靠性、简化硬软件设计、降低产品成本等角度出发,结合现代科学技术的发展,非常需要一种构成系统简单、灵活易用的器件,去改造上述两
[单片机]
单片机程序编写优化
在一本书上看到的,觉得很不错,就分享给大家. 由于 单片机 的性能同电脑的性能是天渊之别的,无论从空间资源上、内存资源、工作频率,都是无法 与之比较的。PC 机编程基本上不用考虑空间的占用、内存的占用的问题,最终目的就是实现功能就可以了。 对于单片机来说就截然不同了,一般的单片机的Flash 和Ram 的资源是以KB 来衡量的,可想而知,单片 机的资源是少得可怜,为此我们必须想法设法榨尽其所有资源,将它的性能发挥到最佳,程序设计时必须 遵循以下几点进行优化: 1. 使用尽量小的数据类型 能够使用字符型(char)定义的变量,就不要使用整型(int)变量来定义;能够使用整型变量定义的变 量就不要用长整型(long int),能不使
[单片机]
单片机的结构和原理说明
8051是MCS-51系列单片机的非常典型的产品,我们用这一个代表性的型号进行系统的单片机原理讲解。 8051单片机包含中央处理器、数据存储器(RAM)、定时/计数器、程序存储器(ROM)、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别对其原理加以说明: ·数据存储器(RAM): 8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。 ·中央处理器: 中央处理器(CPU)是整个单片机
[单片机]
<font color='red'>单片机</font>的结构和原理说明
基于单片机8251和MODEM设计的远程通信系统
1 前言 我国中大型石油化工企业大都采用小电流接地系统来供电,电力系统较为庞大。这类系统一般拥有几座乃至十几座35kV级的总降压站,几十座6~10kV级的高压配电室,分布范围较广,有的变电站离开总调有十几km之远。因此,各变电站的电量参数(电压、电流、相位、功率因数等)的准确、可靠传送,对总调及时决策、对提高供电质量和确保电力运行安全尤为重要。这里,我们采用单片微型计算机控制调制解调器进行远程实时数据传送,获得了满意的效果。 2 硬件系统设计  系统网络图如图1所示。本系统的上位机采用PII微机,通过MODEM←→交换网←→MODEM与作为下位机的单片机系统相连接。电力传感器采集的数据信号输入单片机系统,经软件程序处理后由异
[单片机]
基于<font color='red'>单片机</font>8251和MODEM设计的远程通信系统
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved