浅谈麦克风的灵敏度

最新更新时间:2012-11-02来源: 互联网关键字:麦克风  灵敏度 手机看文章 扫描二维码
随时随地手机看文章

灵敏度, 即模拟输出电压或数字输出值与输入压力之比,对任何麦克风来说都是一项关键指标。在输入已知的情况下,从声域单元到电域单元的映射决定了麦克风输出信号的幅度。

  本文将探讨模拟麦克风与数字麦克风在灵敏度规格方面的差异,如何根据具体应用选择灵敏度最佳的麦克风,同时还会讨论为什么增加一位(或更多)数字增益可以增强麦克风信号。

  模拟与数字

  麦克风灵敏度一般在94 dB的声压级(SPL)(或者1帕(Pa)压力)下,用1 kHz正弦波进行测量。麦克风在该输入激励下的模拟或数字输出信号幅度即是衡量麦克风灵敏度。该基准点只是麦克风的特性之一,并不代表麦克风性能的全部。

  模拟麦克风的灵敏度很简单,不难理解。该指标一般表示为对数单位dBV(相对于1 V的分贝数),代表着给定SPL下输出信号的伏特数。对于模拟麦克风,灵敏度(表示为线性单位mV/Pa)可以用对数表示为分贝:

  

  其中OutputAREF 为 1000 mV/Pa (1 V/Pa)参考输出比。

  有了该信息和正确的前置放大器增益,则可轻松将麦克风信号电平匹配至电路或系统其他部分的目标输入电平。图1显示了如何设置麦克风的峰值输出电压 (VMAX) 以匹配ADC的满量程输入电压 (VIN) 其增益为 VIN/VMAX。 例如,以4 (12 dB)的增益,可将一个最大输出电压为0。25 V的 ADMP504 匹配至一个满量程峰值输入电压为1。0 V的ADC。

  2.jpg

  图1. 模拟麦克风输入信号链,以前置放大器使麦克风输出电平与ADC输入电平相匹配

  数字麦克风的灵敏度(单位为dBFS,相对于数字满量程的分贝数)则并非如此简单。单位的差异表明,数字麦克风与模拟麦克风的灵敏度在定义上存在细微差异。对于提供电压输出的模拟麦克风,输出信号大小的唯一限制实际上是系统电源电压的限制。虽然对多数设计来说并不实用,但从物理本质上讲,模拟麦克风完全可以拥有20 dBV的灵敏度,其中用于基准电平输入信号的输出信号为10 V。只要放大器、转换器和其他电路能支持所需的信号电平,完全可以实现这一水平的灵敏度。

  数字麦克风的灵敏度没有这样灵活,而只取决于一个设计参数,即, 最大声学输入。只要将满量程数字字映射到麦克风的最大声学输入(实际上,这是唯一有用的映射),则灵敏度一定是该最大声学信号与94 dB SPL参考信号之差。因此,如果数字麦克风的最大SPL为120 dB,则其灵敏度为–26 dBFS (94 dB – 120 dB)。除非将最大声学输入降低相同的量,否则无法通过调整设计使给定声学输入的数字输出信号变得更高。

  对于数字麦克风,灵敏度表示为94 dB SPL输入所产生的输出占满量程输出的百分比。数字麦克风的换算公式为

  

  其中 OutputDREF 为满量程数字输出电平。

  现在来比较最后一个非常难懂的地方,数字和模拟麦克风在峰值电平和均方根电平的使用上并不一致。麦克风的声学输入电平(单位为dB SPL)始终为均方根测量值,与麦克风的类型无关。模拟麦克风的输出以1 V rms为参考,因为均方根测量值更常用于比较模拟音频信号电平。然而,数字麦克风的灵敏度和输出电平却表示为峰值电平,因为它们是以满量程数字字(即峰值)为参考的。一般来说,在配置可能依赖于精确信号电平的下游信号处理时,必须记住用峰值电平指定数字麦克风输出的惯例。例如,动态范围处理器(压缩器、限幅器和噪声门)通常基于均方根信号电平来设置阈值,因此,必须通过降低dBFS值从峰值到均方根值按比例调整数字麦克风的输出。对于正弦输入,其均方根电平比峰值电平低3 dB(即(FS√2)的对数测量);对于更加复杂的信号来说,均方根电平与峰值电平之间的差值可能与此不同。例如, ADMP421, 提供 脉冲密度调制 (PDM)数字输出的MEMS麦克风 的灵敏度为–26 一个 94 dB SPL 正弦输入信号将产生–26 dBFS的 峰值输出电平,或–29 dBFS的均方根 电平。

  由于数字麦克风和模拟麦克风的输出采用不同的单位,因此,对两类麦克风进行比较时可能会使人难以理解;但二者在声域中却有一个共同的测量单位,SPL。一种麦克风可能为模拟电压输出,另一种为调制PDM输出,还一种为I2S输出,但它们的最大声学输入与信噪比(SNR,即94 dB SPL参考电平与噪声电平之差)却是可以直接比较的。以声域而非输出格式为参考,这两个规格为比较不同麦克风提供了一种便利的方式。图2显示了给定灵敏度下,模拟麦克风和数字麦克风的声学输入信号与输出电平之间的关系。图2(a)所示为ADMP504模拟麦克风,其灵敏度为–38 dBV,信噪比为65 dB。相对于左侧的94 dB SPL基准点改变灵敏度时,结果会导致以下情况:向上滑动dBV输出条将降低灵敏度,向下滑动输出条则会提高灵敏度。

  4.jpg

  图2. (a)将声学输入电平映射到电压输出电平(模拟麦克风)

  (b)将声学输入电平映射到数字输出电平(数字麦克风)

  图2(b)所示为 ADMP521 digital 数字麦克风,其灵敏度为-26 dBFS,信噪比为65 dB。该数字麦克风输入到输出电平映射示意图表明,调整该麦克风的灵敏度会破坏最大声学输入与满量程数字字之间的映射。与灵敏度相比,SNR、动态范围、电源抑制比、THD等规格能更好地显示麦克风的性能。

  选择灵敏度和设置增益

  高灵敏度麦克风并非始终优于低灵敏度麦克风。虽然灵敏度可以显示麦克风的部分特性,但不一定能体现麦克风的性能。麦克风噪声电平、削波点、失真和灵敏度之间的平衡决定了麦克风是否适用于特定应用。高灵敏度麦克风在模数转换之前需要的前置放大器增益可能较少,但其在削波前的裕量可能少于低灵敏度麦克风。

  在手机等近场应用中,麦克风接近声源,灵敏度较高的麦克风更可能达到最大声学输入,产生削波现象,最后导致失真。另一方面,较高的灵敏度可能适合远场应用(如会议电话和安保摄像头),因为在这类应用中,随着麦克风与声源之间距离的增加,声音会被衰减。图3显示了麦克风与声源之间的距离会对SPL产生什么影响。与声源的距离每增加一倍,声学信号电平将下降6 dB(一半)。

  5.jpg

  图3. 随着与声源距离的增加,麦克风声压电平将下降

  作为参考,图4显示了各种声源的典型SPL,从安静的录音棚(10 dB SPL以下)到痛阈(130 dB SPL以下),痛阈指声音给正常人带来痛苦的点。麦克风很少能整个覆盖——甚至大致覆盖——该范围,因此,针对所需的SPL范围选择正确的麦克风是一个重要的设计决定。应利用灵敏度规格,使麦克风在整个目标动态范围内的输出信号电平与音频信号链的常见信号电平相匹配。

  

  图4. 各种声源的声压电平

  模拟麦克风的灵敏度范围较宽。有些动态麦克风的灵敏度可能低至–70 dBV。有些电容麦克风模块集成前置放大器,因而具有极高的灵敏度,达到–18 dBV。多数模拟驻极体麦克风和MEMS麦克风的灵敏度在–46 dBV至–35 dBV(5。0 mV/Pa至17。8 mV/Pa)之间。这种水平代表着本底噪声(ADMP504和ADMP521 MEMS麦克风可能低至29 dB SPL)与最大声学输入(典型值约为120 dB SPL)之间的良好折衷。模拟麦克风的灵敏度可以在前置放大器电路中调节,该电路通常与传感器元件一起集成在封装中。

  尽管数字麦克风的灵敏度似乎缺乏灵活性,但可通过数字处理器中的增益轻松调节麦克风信号的电平。对于数字增益,只要处理器的位数足以完全表示原始麦克风信号的动态范围,就不会导致信号的噪声电平降低。在模拟设计中,每个增益级都会向信号中引入一些噪声;需要系统设计师来保证每个增益级的噪声足够低,以避免其注入噪声而降低音频信号。例如,我们可以看看 ADMP441, 这是一款数字(I2S )输出麦克风,最大SPL为120 dB(灵敏度为–26 dBFS),等效输入噪声为33 dB SPL(61 dB SNR)。该麦克风的动态范围为其能可靠重现的最大信号(最大SPL)与最小信号(本底噪声)之间的差值(ADMP441为:120 dB – 33 dB = 87 dB)。该动态范围可用一个15位数据字再现。当数字字中的数据发生1位移位时,信号电平会出现6 dB移位。因此,即便是动态范围为98 dB的16位音频处理器也可使用11 dB的增益或衰减,而不会影响原始动态范围。请注意,在许多处理器中,数字麦克风的最大声学输入被映射到DSP的内部满量程电平。在这种情况下,增加任意增益都会使动态范围等量下降,进而降低系统的削波点。以ADMP441为例,在一个满量程以上无裕量的处理器中,增加4 dB的增益会导致系统对116 dB SPL的信号削波。

  图5所示为一个数字麦克风,其提供I2S或PDM输出并直接与一个DSP相连。在该信号链中,不需要使用中间增益级,因为麦克风的峰值输出电平已经与DSP的满量程输入字相匹配。

  7.jpg

  图5. 直接与一个DSP相连的数字麦克风输入信号链

  结束语

  本文说明了如何理解麦克风的灵敏度规格,如何将其应用到系统的增益级中去,同时解释了灵敏度虽然与SNR相关,但并不像SNR一样可以体现麦克风的质量的原因所在。无论是用模拟麦克风还是用数字MEMS麦克风进行设计,本文都有助于设计师选择最适合具体应用的麦克风,从而发挥麦克风的最大潜能。

关键字:麦克风  灵敏度 编辑:神话 引用地址:浅谈麦克风的灵敏度

上一篇:基于高精度Σ-ΔADC和DSP的广播级数字音频延时器
下一篇:深度探讨高清音频IC设计难题

推荐阅读最新更新时间:2023-10-12 20:43

大联大诠鼎集团推出基于Qualcomm产品的三麦克风通话降噪耳机方案
2022年11月10日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下诠鼎推出 基于高通(Qualcomm)QCC3071芯片的三麦克风通话降噪耳机方案 。 图示1-大联大诠鼎基于Qualcomm产品的三麦克风通话降噪耳机方案的展示板图 随着TWS(True wireless stereo)耳机市场的不断成长,用户对于产品的需求也从简单的快速连接,升级到更高的要求标准上。其中通话质量成为当今大多数人购买蓝牙耳机时的一项重要考量。在日常生活中,影响语音通话质量的重要因素之一是噪声。因此语音降噪技术就成了提高语音质量的关键所在。为了能够在非常嘈杂的环境中进行清晰的语音通信,大联大诠鼎基于Qualco
[手机便携]
大联大诠鼎集团推出基于Qualcomm产品的三<font color='red'>麦克风</font>通话降噪耳机方案
ADI推出针对助听设计的业界最小MEMS麦克风
中国,北京 — Analog Devices, Inc. (ADI),全球领先的高性能信号处理解决方案供应商,日前推出一款专门针对助听应用而开发的高性能MEMS麦克风ADMP801。与驻极体电容麦克风(ECM)等传统解决方案相比,ADMP801不仅在尺寸上更小(仅7.3立方厘米),而且性能更稳定,不随时间、温度和环境变化而改变。其等效输入噪声(EIN)低至27 dBA SPL(声压级),1 V电源下的功耗仅17 µA,是传统ECM功耗的几分之一。ADMP801 MEMS麦克风采用小型表贴封装,尺寸仅3.35 mm x 2.50 mm x 0.98 mm,兼容回流焊工艺,灵敏度不会降低。 • 下载数据手册和查看产品页面: h
[医疗电子]
便携式多媒体系统如何实现高质量音频
  在当前功能集中的便携式多媒体设备中,有越来越多的功能正被集成到越来越小的系统中。音频是市场上任何具有多媒体功能的系统中最基本的功能,但系统设计师通常更关注‘吸引人眼球’的特性,如无线连接、视频处理、图像捕获和显示等。其结果是,在众多的重要元器件之间,哪里有一点空间,就把音频电路挤身到哪里,从而导致音频质量非常一般乃至低劣。然而,只要稍加注意,良好的音频质量就能与用户要求的众多其它性能一起被无缝集成到系统中。本文提供了一些与包含有音频回放和/或记录功能的任何便携式系统设计相关的优秀系统设计和PCB版图设计的各种建议。   在便携式音频系统中存在许多引起劣质音频的源,不过本文主要关注模拟音频信号上影响音质的噪声源。不管是平坦(
[嵌入式]
电容传感器的原理及应用
1引言 用电测法测量非电学量时,首先必须将被测的非电学量转换为电学量而后输入之。通常把非电学量变换成电学量的元件称为变换器;根据不同非电学量的特点设计成的有关转换装置称为传感器,而被测的力学量(如位移、力、速度等)转换成电容变化的传感器称为电容传感器。 从能量转换的角度而言,电容变换器为无源变换器,需要将所测的力学量转换成电压或电流后进行放大和处理。力学量中的线位移、角位移、间隔、距离、厚度、拉伸、压缩、膨胀、变形等无不与长度有着密切联系的量;这些量又都是通过长度或者长度比值进行测量的量,而其测量方法的相互关系也很密切。另外,在有些条件下,这些力学量变化相当缓慢,而且变化范围极小,如果要求测量极小距离或位移时要有较高的分辨
[嵌入式]
微功耗高灵敏度声光控制型LED照明灯的设计
  智能型照明灯能够根据需要适时地改变照明状态,在保证舒适性的前提下尽量节省电能。具体措施是在无人时及时自动熄灯,在有可利用的自然光时,适时地减少或停止电气照明。如走廊、电梯口、公共卫生间等处采用的声控灯或感应灯,此类智能灯具有很大的节能效果。   传统的照明灯正在逐渐地被新型的高效、节能、环保、长寿命的半导体照明灯具所取代,如楼道所用的LED灯,其在白天和晚上的大部分时间处于待机状态,因此在设计中实现低功率待机是很关键的。   由于现有的产品为减少待机功耗,使用压电陶瓷片作为声音传感器,频率响应很差,特别是对低频声音的触发灵敏度过低,只有发出很大的响声时,才能点亮灯具,因此使用很不方便。   文中利用MK6A1
[电源管理]
微功耗高<font color='red'>灵敏度</font>声光控制型LED照明灯的设计
ADI最新同步解调器可提高低功耗应用的信号测量灵敏度
Analog Devices, Inc. (NASDAQ: ADI)公司近日发布一款集成度、性能、灵活性和功耗均达行业最佳水平的同步解调器ADA2200。 ADA2200采用ADI正在申请专利、由Lyric半导体有限公司(2011年中期被ADI收购)开发的采样模拟技术(SAT),同时集成一个可配置模拟滤波器;借助该器件,便携式低功耗仪表设计师可以最大限度地延长电池寿命,并在大噪声源条件下对模拟信号进行精密的幅度和相位测量。 与传统分立式方案相比,这种紧凑、集成式解决方案最多可减少25%的PCB电路板占用面积,为设计师带来更大的灵活性,缩短系统设计和优化时间,为电路设计在多种传感器、产品和平台中的重复利用提供便利。 低功耗(
[测试测量]
全面解析数字麦克风技术及发展现状
近年来随着麦克风技术及小信号模数转换技术的发展,使驻极体电容式麦克风(ECM)可以增加数字音频输出,从而为麦克风这种电子产品的应用开创了一个新的局面。一直以来,ECM麦克风厂商都在致力于提高产品的敏感度,信噪比和回流焊接等性能,麦克风模数转换芯片,尤其是应用于微机电系统(MEMS)麦克风的转换芯片的推出正在极大整体提高上述麦克风性能。 随着飞兆半导体等一大批知名半导体公司的加入及推出ECM和MEMS麦克风模数转换芯片,令过去数十年来普遍采用的结型场效应晶体管(JFET)逐渐被淘汰,也令这个市场出现结构上的转变,为麦克风添加数字输出功能将会是放大器技术的目前的重要发展,这种新技术适用于移动电话、笔记型电脑以及其他便携式麦克风应用
[嵌入式]
长野计器推出新款压力传感器提高灵敏度
长野计器于日前推出了新款压力传感器,该传感器通过使用非晶质金属玻璃使灵敏度比原来提高4倍。金属玻璃通过射出成形作为振动板使用(压力检测元件),通过在振动板上蒸镀应变片作为压力传感模块来工作。 由于灵敏度得到提高,不仅是在精密油压制动、或者提高了燃料喷射压的低环境负荷型柴油发动机等汽车领域,而且在以检测工厂空气压为主的产业领域也可广泛使用。 金属玻璃由日本金属材料研究所教授井上明久开发,长野计器采用了锆基和镍基两种金属玻璃。与现有压力传感器的振动板使用的不锈钢SUS630相比,拉伸强度高达其1.5~2.5倍,而杨氏模量却只有其1/2~3/4。也说是说,金属玻璃具有高强度、低杨氏模量的特点,作为压力
[汽车电子]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved