TMS320VC54系列EPROM的加载实现

发布者:beup001最新更新时间:2008-11-11 来源: 国外电子元器件关键字:DSP  EPROM 手机看文章 扫描二维码
随时随地手机看文章

  DSP芯片(数字信号处理器)已成为人们日益关注并得到迅速发展的具有前关沿技术的一种集成电路,而且已得到越来越广泛的应用。TI公司推出的5000系列DSP具有高性能、低功耗等优良性能,一推出就得到了用户的欢迎。5000系列DSP被广泛应用于电信、雷达、仪器仪表、图像处理等许多方面。其应用范围的广泛性决定了必须有灵活多样的加载方式与之相适应。正因为如此,它的加载方式也较单片机的加载要复杂的多。为了能让读者对DSP的各种加载方法有个初步的了解和今后应用的方便,本文立足实际经验,简单介绍了各种加载方法,并较为详细地介绍了EPROM并行加载方法及应注意的问题。

  1 DSP的各种加载方式

  C5000系列可提供的加载方式有以下几种:

  ●主机端口(HPI)加载

  程序的执行代码由主机通过主机接口(HPI)加载到DSP的片内存储器;

  ●并行加载

  加载程序通过外部并行总线从数据空间读取自举表,自举表内包含有程序代码部分、每部分代码的目的地址、加载成功后程序的执行地址以及其它一些配置信息;

  ●标准串口加载

  加载程序通过多通道缓冲串口(McBSP)来接收自举表,并根据自举表中的信息来加载代码。McBSP0支持16位的串行接收方式,McBSP1支持8位的串行接收方式;

  ●8位或16位I/O加载

  加载程序通过使用异步握手协议从I/O的OH口读取自举表;

  ●8位串口EEPROM加载

  加载程序从一个连接到McBSP1的串行EEPROM来接收数据。

TMS320VC54系列EPROM的加载实现

  2 C5000的加载过程

  C5000系列加载程序已固化在ROM内。在硬件复位期间,如果DSP的MP引脚为高是平,系统就从外部程序存储器FF80H执行用户程序;若MP为低电平,系统则从片内ROM的FF80H开始执行程序,同时选择加载方式。C5000的具体加载过程如下:

  (1)首先,在自举加载前对其进行初始化,其中包括:使中断无效(INTM=1),内部RAM映射到程序/数据区(OVLY=1),对程序和数据区均设置七个等待状态等。

  (2)检查INT2,决定是否从HPI中载。主机接口(HPI)是利用INT2进行自举加载的。如果没有INT2信号,说明不是HPI加载。

  (3)检查INT3决定是否进行串行EEPROM加载。如果DSP检测到INT3信号,则进行串行EEPROM加载,否则转到(4)。

  (4)从I/O空间的FFFFH处读取源地址,如果是有效的地址,则进行并行加载;否则从数据空间的FFFFH处读取源地址,如果地址有效,也可进行并行加载;若两种情况都不是则转到(5)。

  (5)初始化串口,置XF为低。若McBSP1接收到一个数据,先检查是否是有效的关键字,若是则通过McBSP1进行串口加载,否则检查McBSP0,其过程与McBSP1相同。

  (6)检测BID引脚是否为低,若为低再检查是否为有效的关键字,若是则进行I/O加载,否则检测是否是有效的入口点,若是,则转入入口点,若都不是则跳到(5)。

  下面通过一个具体的例子来详细介绍一下EPROM并行加载过程,DSP选用TMS320VC5402(5402提供4k 16bit的掩模ROM),EPROM选用27C256。

  由TMS320V5402和27C256所构成的程序加载电路如图1所示。图中74LVC245的作用是将27C256输出的TTL电平转换成TMS320VC5402能接收的电平。它还对DSP起到保护作用。若去掉274LVXC245,则会烧坏5402。

  27C256的输出使能控制线(OE)用来控制器件的有效或无效(双侧相互隔离)。

  74LS08将27C256的地址定为8000H~FFFFH。LVC245的DIR端接DSP的R/W端。27C256垢CS端接74LS08的译码输出,OE端接低电平信号。在这种加载方式中,EPROM是作为TMS320VC5402的片外数据区,用户程序是通过片内固化的加载程序读入到片内程序区来完成加载的。

TMS320VC54系列EPROM的加载实现

  3 8位EPROM加载过程

  当检测到不是串行EEPROM加载时,加载程序则转入并行加载方式。此时加载程序从并口(外部存储器)传输代码到程序空间,支持8位和16位加载。另外,程序也可自动配置SWWSR(软件等待状态寄存器)和BSCR(分区转换控寄存器),使之与不同加载方式相适应,从而使DSP能与不同速率的EPROM相连接。考虑到高速器件与低速器件的匹配问题,加载程序使用默认的七个等待周期。

  加载程序能从I/O空间的0FFFFH和数据空间的0FFFFH处获取代码的首地址。通常,从数据空间获取代码的首地址较方便。因为在数据空间不需要另扩I/O空间,同时又可增加电路改动的灵活性。对5402来说,自举表可以位于4000H~FFFFH处的任何位置。图2详细描述了EPROM加载过程。

  应当注意的是:如果不用并行加载方式,D0必须通过一个小的上拉电阻置为高电平,以此来避免加载程序从数据空间读到0AAH关键字。另外,加载程序事先并不知道存储器的宽度,所以它要同时检查存储器的低位(0FFFFH)和高位(0FFFFH)以获取正确的源地址。

  4 自举表

  自举表的头部是关键字(08AA或10AA),加载程序就是根据它来判断是16位还是8位加载方式;接着的两个字是SWWSR和BSCR的值;第四和第五个字程序代码的入口点(即加载以后程序执行的首地址);接着是第一段代码的长度以及它的目的地址;紧跟着是另一段代码;依此类推,最后是0000H,这是自举表的结束标志。表1为自举表的结构。

  表1 自举表的结构图

08AAh or 10AAh
Initialize value of SWWSR 16
Initizlixe value of BSCR 16
Entry point (XPC)7
Entry point(PC)16
Size of first section 16
Destination of first section (XPC)7
Destination of first section (PC)16
Code word(1)16
Code word(N)16
Size of last section 16
Destination of last section(XPC)7
Destination of section (PC)16
Code word(1)16
 
Code word(N)16
0000h

  笔者将结合实例,介绍一下自举表的建立。

  假设用户编制的源程序文件为radar.asm,链连器命令文件为radar.cmd,生成的COFF文件为radar.out,最后生成的INTEL的十六进制文件为radar.hex,用户可以通过EPROM编程器将它烧录到EPROM中。

  (1)首先,使用编译器对应用程序进行编译。值得注意的是必须在编译器的命令行上加-V548选项,若遗忘了这个选项,以后HEX转换工具将会产生C54早期版本的自举表,而不提供任何错误与警告信息。这个错误极其隐蔽,务必注意。

  例:asm500radar.asm-1-s-x-v548

  (2)第二步,对第一步产生的目标文件进行链接。在链接过程中,链接器将各个目标文件合并,并完成以下工作:

  ●将各个段配置到目标系统的存储器;

  ●对各个符号和段进行重新定位,并给它们指定一个最终的地址;

  ●解决输入文件之间未定义的外部引用。

  例:Lnk500 radar.cmd-o radar.out

  (3)最后,运行HEX代码转换工产生自举表。十六进制转换程序可以很方便的将COFF目标文件转换成TI,INTEL,MOTOROLA或TEKTRONIX公司的目标文件格式。转换后生成的文件下载到EPROM编程器。

  例:Hex500 radar.out -I - o radar.hex - memwidth 8 -romwidth 8 -boot -bootorg 0x0000

  注意:为了保证加载的成功率,用户编制的程序代码前面应加上对DSP的各个状态寄存器进行初始的程序段。

关键字:DSP  EPROM 引用地址:TMS320VC54系列EPROM的加载实现

上一篇:TMS320在宽带恒定束宽波束形成器中的应用
下一篇:使用TMS320C542构成数据采集处理系统

推荐阅读最新更新时间:2024-05-02 20:42

新型定点数字信号处理器TMS320VC5510
    摘要: TMS320VC5510是美国TI公司推出的新一代数字信号处理器,它具有更高的代码执行效率和更低的功耗,其最高指令执行速度可达800MIPS。文中详细介绍了TMS320VC5510的特点参数、内部结构、片内资源以及相关的应用信息资料。     关键词: DSP 定点 CPU TMS320VC5510 1 概述 TMS320VC5510是Texas Instrument(TI)公司采用新一代定点DSP核构成的数字信号处理器,与TMS320C54X相比,它功耗更低,代码执行效率更高,在0.9V下,其DSP核的功耗为0.05mW/MIPS,最高执行指令速度可达800MIPS。为了保护用记在软
[应用]
DSP与以太网卡的接口技术研究
    摘要: 通过分析NE2000网卡与微机ISA总线的接口电路,用DSP芯片TMS320F206结合外围电路模拟ISA时序,实现了DSP与NE2000网卡的软、硬件接口,从而使ISA总线开型网卡脱离了PC机环境的制约。     关键词: 网卡  ISA总线  DSP 以太网是当今最受欢迎的局域网之一,它包括了OSI七层模型的物理层和数据链路层的全部内容 。在以太网中,网卡用于实现802.3规程,其代表是NOVELL公司的NE2000和3COM公司的3C503、3C508、3C509等网卡。对网卡直接编程就可以实现局域网内任意站点之间的通信而完全抛开了网络操作系统,这就启发我们能否在脱离PC环境的条件下实现
[应用]
基于DSP的微波着陆信号处理系统设计
无线电着陆引导系统,是用无线电设备引导驾驶员或自动驾驶仪,使飞机安全着陆的导航系统。目前民航系统主要采用的是仪表着陆系统(ILS),这种系统只能提供一条下滑角固定不变的对准跑道中心线的进场着陆航道,不适用于短距起落和垂直起落的飞机;通道少(40个),不能满足国际民航的新要求(200个)。而微波着陆系统(MLS)允许飞机任意选择机场航道,系统容量大(200个通道),适用于作各种起落的各型飞机。本设计就是根据MLS的工作原理,介绍了基于DSP实现的算法——DPSK自适应解调和系统硬件设计。 1 微波着陆系统的工作原理 微波着陆系统(MLS)包括机场地面发射台及机载接收设备两部分。地面发射台分为7个部分:方位扫描波束发射台
[嵌入式]
MCU与DSP的SPI通信设计
引言 现今的工控系统中,为了提高系统的实时性和适用性,一般采用DSP来完成核心算法与控制,而使用MCU来实现人机对话,以实现实时控制功能。这样,DSP和MCU需要一种高效的数据总线来完成它们之间的大量数据传送。SPI总线由于占用的接口线少,通信效率高,并且大部分处理器芯片都支持,因而是一种理想的设计方案。 针对交流伺服系统实际使用的要求,采用TI公司的高性能DSP控制器TMS320LF2407A(简称“2407A”)作为控制核心;选用TI公司生产的MSP430系列单片机中的MSP430F149作为人机界面的控制芯片,来实现按键和数据采集以及显示的功能;采用SPI串口通信实现单片机与DSP之间的数据传输。 1系统硬件的构
[单片机]
MCU与<font color='red'>DSP</font>的SPI通信设计
详细介绍如何采用DSC(DSP)控制交流逆变系统
什么是DSC? 简单地讲就是:DSP+MCU=digital signal control(DSC) Microchip的dsPIC数字信号控制器既拥有16位闪存单片机的高性能,又兼具数字信号处理器( DSP ) 的计算能力和数据吞吐能力。16位单片机为核心的dsPIC数字信号控制器不仅具有功能强大的外围设备和快速中断处理能力,又融合了可管理高速计算活动的数字信号处理器功能,堪称嵌入式系统设计的最佳单芯片解决方案,从而使设计人员能够将多种功能集成在一起,同时节省电路板空间。 Microchip的16位dsPIC 数字信号控制器将数字信号处理器的功能与单片机的功能完美地结合在一起。随着这些创新dsPIC数字信号控制器的问世,
[电源管理]
详细介绍如何采用DSC(<font color='red'>DSP</font>)控制交流逆变系统
DSP的数字存储示波卡的设计方案
  本文介绍了一种基于DSP的双通道数字存储示波器的设计方案。该数字存储示波器主要由DSP 数字信号处理 器、前端调理电路、A/D转换模块,数字存储模块,FPGA芯片、电源模块等组成,实现了高速数据采集和大容量的数字存储以及很高的模拟带宽。   1.引言   数字存储示波器有别于一般的模拟示波器,它是将采集到的模拟电压信号转换为数字信号,由内部的微处理器进行分析、处理、存储、显示或打印等操作。这类示波器通常具有程控和遥控能力,通过GPIO接口还可将数据传输到计算机等外部设备进行分析处理。随着大规模集成电路的不断发展,功能强大的DSP数字信号处理器的实时性越来越强。DSP凭借其强大的数字信号处理能力,为数字示波器的数据采集系统的
[嵌入式]
<font color='red'>DSP</font>的数字存储示波卡的设计方案
8051、ARM和DSP指令周期的测试与分析
摘要 在实时嵌入式控制系统中,指令周期对系统的性能有至关重要的影响。介绍几种最常用的微控制器的工作机制,采用一段循环语句对这几种微控制器的指令周期进行测试,并进行分析比较。分析结论对系统控制器的选择有一定的指导作用。 关键词 指令周期测试 AT89S51 LPC2114 TMS320F2812   在实时控制系统中,选择微控制器的指标时最重要的是计算速度的问题。指令周期是反映计算速度的一个重要指标,为此本文对三种最具代表性的微控制器(AT89S51单片机、ARM7TDMI核的LPC2114型单片机和TMS320F2812)的指令周期进行了分析和测试。为了能观察到指令周期,将三种控制器的GPIO口设置为数字输出口,并采用循环不断地置
[应用]
CEVA凭SensPro Sensor Hub DSP协助客户有效实现传感器融合
众所周知,传感器在配合使用时效果最佳。对于同步定位与地图构建 (SLAM) 来说更是如此。SLAM 在 AR/VR 领域扮演着重要的角色,可以根据用户的姿势调整场景,避免无人机或机器人这样的应用在使用过程中的碰撞,用途广泛。SLAM市场预计到2023年将增长至4.65亿美元,年复合增长率为36%,为大多数开发者提供了绝佳机遇。在手机上将 SLAM 应用于室内导航可能会在规模庞大的基础平台市场中占据主导地位。GPS 不能在室内工作,基于信标的导航只能在具有信标基础设施的区域工作。而 SLAM 则可以在任何提供室内地图的地方工作,符合大多数楼宇自控管理系统的低成本期望。将该区域的场景与用户在该区域行走时的姿势和运动融合到了一起,使得在
[手机便携]
CEVA凭SensPro Sensor Hub <font color='red'>DSP</font>协助客户有效实现传感器融合
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved