基于DSP的混合信号解决方案解决高级音频处理难题

发布者:AdventureSeeker最新更新时间:2009-11-27 来源: 中国电子元器件关键字:DSP  音频处理  混合信号 手机看文章 扫描二维码
随时随地手机看文章

  从20世纪70年代产生构想以来,特别是在过去十年间,数据信号处理(DSP)在媒体应用激增的推动下,已经成为了一项耳熟能详的技术。从用于军事的语音和图像处理开始,这项技术首先发展进入音频和视频的应用环境,随即又进入了更加主流的电子领域。

  今天,设计师们正面临着如下一系列信号处理方面的挑战:要求同时具备先进的功能性、便携性和低耗能性的应用,其要求不断增加。音频领域是个典型应用:从专业耳机到电子听诊器和遥感器,新的应用不断出现,这就要求工程师利用电池供电,以相对较低的成本和小型化设计实现音频压缩和录音、声音管理、回波消除和言语处理。

  但是应用的便携性增加了这些挑战的难度:低能耗不仅仅要求提高电池寿命,还要求降低电池的尺寸大小和重量。尺寸限制还要求组件数量越少越好,而设备的复杂性则不断随着市场要求产品所具特色的增加而增加。最后,市场的快速变化向设计师们施压,他们必须比以前更加迅速地完成项目,并尽快将他们的想法转化成销售额。因此,IP复用或某些形式的可编程性至关重要。

  有充分证据证明,实现信号处理功能集成的驱动力也对传统上模拟和数字电子技术之间的分离造成了冲击,使得混合信号的IC设计更加普遍。对于芯片设计师来说,这本身就困难重重:例如,他们需要设计具备多重地和电源的组件,并确保模拟和数字两部分之间的充分隔离,因为其中一部分可能干扰到另一部分。

  尽管存在这些固有的难题,系统设计师的需求已经使模拟和数字技术集成于芯片上变得不可避免。产业从许多不同的方向解决了这个问题:线性电路的制造商已经开始向他们的设备添加数字功能;同时可编程逻辑技术的供应商也已经尝试集成模拟功能。但是,最重要和最成功的事情可能是,微处理器、DSP以及DSP核心的制造商一直努力在芯片上集成更多外围功能。今天,具有真正专门知识和处理技术的设备供应商可以提供具备ADC、DAC、显示驱动器、电源管理、集成放大器以及许多在特殊应用中普遍使用的外围支持功能的单芯片信号处理解决方案。

  单芯片音频处理解决方案

  图1展示了由AMI半导体公司开发的经优化的混合信号片上系统音频处理解决方案的示意图。这款被称为BelaSigna™ 250的芯片提供了一个极好的例子,证明了当前使用最新的混合信号半导体处理技术而可能达到的集成水平。

由AMI半导体公司开发的经优化的混合信号片上系统音频处理解决方案的示意图

  该设备以将非同寻常的功率效率与高性能有机结合的平行处理架构为基础,构成了一个完整的音频解决方案,包括ADC与DAC、滤波器、放大器和电源管理电路。使用一个完全可编程的16位定点双哈佛架构DSP核心作为其主处理器,意味着BelaSigna 250可以迅速地在软件中进行配置——利用AMIS或第三方软件合作伙伴提供的程序库功能,使这个进程得以加速。

  通过纳入加权叠加式(WOLA)滤波器组协处理器而引入的平行性,通过在时间域和频率域之间的一个信号上进行转换以及其它基于矢量的计算,推动了数字滤波。这个硬件加速功能使得在便携式设计中所要求的电源效率和空间要求成为可能。

  这个平行处理器架构被一个完全立体声的音频信号链所环绕,包括经由16位过采样∑-△A/D转换器的输入和包括模拟线路输出以及可以直接驱动扩音器的差分数字功率输出。音频链杰出的保真度提供了一个88dB的整体系统动态范围。架构能够执行双精度操作意味着这个信号保真度可以在处理期间被维持。通过在WOLA滤波器组协处理器中使用的新时间—频率转换算法,实现了极低的系统噪音以及较低的群延迟。

  由经过音频优化的DMA单元,即输入/输出处理器(IOP)来管理设备内的信号数据。这个单元管理着从ADC和输入FIFO得来的数据集合。在处理之后,它还向音频输出级和输出FIFO馈送数字数据。每一个FIFO本身具备两个内部接口:其一是一个标准顺序,当数据到达时,最近输入块的地址会发生改变;其二是一个用于时域滤波的“智能”接口,最近的输入在那里保持不变。

  除了接口连接的灵活性之外,可以通过四种一般意义上有所不同的方法来访问FIFO中的数据:单声道模式;简单立体声模式;数字混合模式;以及完全立体声模式。这些模式为立体声数据以及单声道/立体声输入/输出配置的交叉或分块存储提供了多样的选择。

  通过在一个单独设备中合并两个主要的处理单元、硬件加速、数据管理以及输入/输出信号调节,设计师可以更快更简单地集成更大的系统。他们可以显著地削减组件数量,满足便携式装备中固有的小尺寸要求。加入I2S、PCM、SPI、I2C、TWSS和GPIO的直接接口,以及采用设备的小型形状因子(64针脚LFBGA包,尺寸仅为7mmx7mm)和处理数据的集成IOP,进一步帮助设计师实现小型化。

  此外,BelaSigna 250还加入了许多额外功能,有助于降低功耗。该设备具有低功耗设计。例如,系统在平均负载下以1.8V的供电电压和20MHz的时钟频率工作,通常将消耗不到5mA的电量。为了额外节能,每一个输入通道都可以通过软件关断,同时,仅需0.05mA电流供应的低电流待机模式延长了电池寿命。

  电子听诊器参考设计

  集成混合信号设备应用一个最有前途的领域是在医疗电子领域:手持器械和便携式病人监护仪等众多应用尤其体现了对便携性、低功耗和快速开发更为普遍的要求。特别引人注目的是电子听诊器。该设备正开始得到认可,与以前的传统产品相比,它们在对心肺疾病进行估定和分类方面具有极大的潜在优势。

  为了帮助制造商利用这个机会,AMI半导体公司开发了一种基于BelaSigna 250的电子听诊器参考设计(ESRD)(图2)。该设计的目的是使具备业内领先的音频性能和电池寿命的产品得以迅速开发和部署。它提供了三种频率响应模式,同时,可达21dB的可调节放大器允许从业人员通过10级控制来设定音量。此外,设备还可以将心音和肺音记录在非易失性存储器中,这些声音可以以正常速度或一半的速度回放,以协助诊断。

基于BelaSigna 250的电子听诊器参考设计

  这项参考设计允许在“铃声”(低频)、“振动膜”(高频)和扩展频率模式之间用按钮进行选择。开发者可轻易实现额外功能,因为BelaSigna 250是一个可编程的平台:例如,他们可以引入心率监控或者引入能够将胎儿心跳和孕妇心跳分离的自适应处理方案。此外,该设备还包括直接连接无线和有线通讯芯片的接口:这就使我们能够在未来开发出通过Bluetooth®(蓝牙)协议向个人电脑或其它设备进行数据传输的连接,便于在晚些时候对数据进行储存、分析和恢复。

关键字:DSP  音频处理  混合信号 引用地址:基于DSP的混合信号解决方案解决高级音频处理难题

上一篇:基于CPCI总线的智能A/D,D/A模块设计
下一篇:便携式产品具有低功耗意识的FPGA设计方法

推荐阅读最新更新时间:2024-05-02 20:56

科大讯飞的嵌入式语音识别软件与CEVA DSP深度整合优化
CEVA,全球智能和互连设备的信号处理IP授权许可厂商 (纳斯达克股票交易所代码:CEVA)宣布,科大讯飞的语音识别软件套装已经可以提供为CEVA的音频/语音DSP优化的版本。这种紧密集成的解决方案已经可提供给客户,并已嵌入到为消费类电子产品设计的量产超低功耗语音处理器。 由于语音处理和人工智能的进步,语音识别正快速成为消费类电子、智能家居、移动和可穿戴设备、监控、汽车和IoT设备的人机界面(HMI)的理想选择。科大讯飞是中国顶尖的语音识别解决方案提供商,也是基于语音的人工智能技术的全球领先者。科大讯飞和CEVA开展合作,为CEVA的先进音频/语音DSP优化科大讯飞的神经网络语音识别、降噪及回声消除算法,从而得到一种功能强大、高
[嵌入式]
基于FPGA+DSP架构视频处理系统设计
本系统采用基于FPGA与DSP协同工作进行 视频处理 的方案,实现视频采集、处理到传输的整个过程。 实时视频图像处理中,低层的预处理算法处理的数据量大,对处理速度要求高,但算法相对比较简单,适合于用FPGA进行硬件实现,这样能兼顾速度及灵活性。高层的处理算法结构复杂,适用于运算速度高、寻址方式灵活、通信机制强的DSP芯片宋实现。 DSP +FPGA架构的最大特点是结构灵活、有较强的通用性、适合于模块化设计,从而能够提高算法效率,同时其开发周期短、系统易于维护和升级,适合于实时视频图像处理。 系统采用模块化的设计方法,将整个系统划分为三部分:视频采集单元、视频处理单元和视频传输单元。 整个系统以FPGA作为核心控制单元并完
[嵌入式]
基于FPGA+<font color='red'>DSP</font>架构视频<font color='red'>处理</font>系统设计
基于DSP的FIR数字滤波器的设计与实现
0 引言 数字信号处理现已在通信与信息系统、信号与信息系统、自动控制、需达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中, 滤波占有十分重要的地位, 如对信号的过滤、检测、预测等, 都要广泛地用到滤波器。IIR数字滤波器的设计保留了一些典型模拟滤波器优良的幅度特性, 但所涉及的滤波器相位特性一般是非线性的, 而FIR滤波器则可在保证幅度特性并满足技术要求的同时, 也很容易做到严格的线性相位特性。 1 基于窗函数法的FIR滤波器设计 1.1 单位冲激响应 首先应根据技术要求确定待求滤波器的单位冲激响应hd (n)。如果给出待求滤波器的频率为Hd (ej), 那么单位取样响应则可用下式求
[嵌入式]
磁悬浮轴承控制器中MAX115与DSP的接口设计
引言   在五自由度主动磁悬浮轴承控制系统中,采用由工控PC+DSP控制器的架构是一种较好的方法,而DSP核心控制器则是磁悬浮轴承控制系统中非常重要的一部分,对主轴位置信号的精确采集是DSP控制器的首要任务。在本控制器中采用MAX115对主轴位置的模拟信号进行采集。 图1 磁悬浮轴承DSP控制器的结构简图 图2 MAX115与TMS320F240 DSP之间的接口电路图 磁悬浮控制器中的ADC选择   在磁悬浮主轴控制器的设计中,对主轴位置的测量是至关重要的。位置传感器的信号经过适当的信号调理电路处理后被传送到A/D采样通道,ADC把得到的模拟信号转换成相应的数字信号,芯片采样的精度和分辨率以及采样转换时间是非常重要
[应用]
数字信号处理器及软件套件 提升电池性能【欧胜】
英国爱丁堡及中国深圳,2011年2月 – 欧胜微电子有限公司日前发布了其前所未有的第一款完全可编程独立音频数字信号处理器(DSP, 产品编号为WM0010),以及一系列音效增强软件,从而在提供完整高清晰度(HD)音频的征途上又迈出了新的一步。 WM0010是市面上同类产品中,率先装备了低功耗、高性能Tensilica HiFi DSP内核的产品之一。通过与应用处理器前后协同工作,它将欧胜的低功耗音频协处理器与嵌入式系统软件、算法和软件支持整合在一起,使智能电话、平板电脑和电视的制造商能够集成他们自己的软件部件来构建个性化的音频解决方案,以支持多种多样的关键应用实例。随着音频越来越多地被分离出来到独立音频器件
[嵌入式]
<font color='red'>数字信号处理</font>器及软件套件 提升电池性能【欧胜】
在示波器上使用DSP滤波技术的优点和缺点
当前所有高速实时数字示波器都采用了各种形式的数字信号处理技术( DSP )。某些工程师担心使用软件对采集来的数据波形滤波可能会与实际的信号有出入。但是,示波器捕获的原始波形未必表示的是实际输入信号,示波器捕获的“原始”波形数据中包括了失真的结果,这是由示波器的前端硬件滤波器造成的。在理想情况下,实时示波器拥有无限快的采样速率、完美的平坦频响、线性相位响应、没有底噪声及带宽高。但在实际环境中,示波器具有硬件限制,这种限制产生了误差。DSP滤波技术最终可以在一定程度上校正硬件导致的误差,改善测量精度,增强显示质量。 当前性能较高的实时示波器中常用的DSP滤波技术有以下五种: 每种滤波器特点都可以在用有限脉冲响应 用于波形重建的
[测试测量]
在示波器上使用<font color='red'>DSP</font>滤波技术的优点和缺点
凌华科技DSP脉冲式运动控制卡AMP-204C/208C
备受业界瞩目的年度权威最佳产品评选活动-——CONTROL ENGINEERING China 2013年最佳产品奖近日在上海工博会揭晓,并在上海证大丽笙酒店隆重举行了CONTROL ENGINEERING China十周年庆暨2013年度最佳产品奖颁奖典礼。在近3个月的评选活动上,机器视觉与运动控制的整合专家凌华科技发布的高性价比的新一代DSP脉冲式运动控制卡AMP-204C/AMP-208C在31家同行业企业中脱颖而出,斩获了电机驱动与运动控制类最佳产品奖。 作为业界最具权威的评选活动之一,本次产品针对产品技术创新性、产品市场影响力、产品用户友好型和产品相关服务性四大标准严格评选出来。凌华科技获得的最佳产品奖不仅充分说明了凌
[工业控制]
凌华科技<font color='red'>DSP</font>脉冲式运动控制卡AMP-204C/208C
H.264视频解码器在C6416 DSP上的实现
摘要:介绍了最新视频压缩标准H.264,并实现了适合TI C6416 DSP内核的H.264视频解码器算法,在NVDK C6416板卡上进行测试,达到了实时的解码效果。该优化算法,结合DSP处理平台和网络技术,构成新的多媒体通信终端设备,具有广泛的应用前景。 关键词:H.264 视频压缩 数字信号算是器(DSP) NVDK 多媒体通信终端设备具有广泛的应用前景,可以应用于视频会议、可视电话、PDA、数字电视等各个领域,所以高效、实用的多媒体终端设备一直是通信领域研究的主要方向之一。 多媒体通信终端的实现主要有两点:一方面需要快速、稳定的处理器作为媒体信号处理的平台,另一方面需要适合多媒体通信的协议标准和软件算法,尤其是对音视频信号的
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved