多运动目标实时提取系统设计与实现

发布者:梦中徐来最新更新时间:2011-04-25 来源: 电子技术应用关键字:实时图像处理  TI 手机看文章 扫描二维码
随时随地手机看文章
   

摘  要: 针对弹道测量环境中大视场、大数据量、高速传输复杂的图像中多运动目标提取算法,设计了基于双DSP+FPGA的实时图像处理系统。提出了一种结合背景自适应更新与基于窗口的目标提取算法,通过背景自适应更新算法得到目标运动区域,再运用基于窗口的目标提取算法实时提取多运动目标的信息。实验证明,系统能准确实时地提取目标信息,满足弹道测量系统要求。
关键词: 数字信号处理器;实时图像处理;多目标提取;自适应背景更新

    弹道测量设备属于常规武器实验靶场的重要光电测量试验设备,其特点是视场大、测试精度高,目标为凸形目标,但需要处理的数据量非常大,只能进行事后处理。目标实时提取的核心在于背景的实时更新及目标的快速检测。最简单的背景减法的实现是选取一个固定模型作为背景,这个模型用来从背景中区分运动区域。但这种方法对于光强度变化、物体从背景中闯入或消失、树叶摆动等动态运动不能处理。因此需要更加智能的背景更新算法来防止假目标的产生。在实际应用中,通过背景更新提取目标区域时,可能还会出现多个假目标。实际中目标的各种参数提取需要目标所有的像素点坐标、灰度值等信息[1],若将这些信息全部存储后再进行计算则需要大量的存储空间,而且由于运算的复杂性,还会大大降低处理的实时性。本文提出了一种自适应背景更新算法来初步提取目标运动区域,而后用一种基于窗口的目标提取算法来实现多目标信息的提取。
1 双DSP+FPGA实时数字图像处理系统硬件构成
    采用美国TI公司的高速数字信号处理器TMS320-DM642为处理核心,采用现场可编程门阵列FPGA Virtex-II系列芯片VC2V2000进行预处理,并辅以数字图像存储器单口RAM CY7C1061AV33_8ZC和双口RAM IDT70V28L20PFG等器件构成了实时高速数字图像处理系统。主/从DSP外接SDRAM。FPGA扩展了IO资源接口,系统原理框图如图1所示。

    系统工作原理是将线阵CCD相机采集后的原始图像数据输入到FPGA。一方面原始图像数据由FPGA乒乓缓存到FPGA外接图像存储器组SRAM1、SRAM2中,以供主DSP通过FPGA从中乒乓取出,由PCI接口来完成原始视频数据的实时传输;另一方面,原始图像数据通过FPGA从DSP采入到SDRAM2中,以便从DSP进行背景抑制及背景更新处理。主DSP主要完成原始图像数据的传输及根据目标的运动区域对多目标块的连通性分析及目标相关参数的提取。SDRAM1用来存储中间图像及运算结果。命令交互双口RAM用来实现主/从DSP间的命令及图像数据交互。
2 背景处理算法
    目前有多种背景更新算法,如基于卡尔曼滤波的背景更新算法[3]和基于分类的背景更新算法。邹承明等人提出了一种改进的自适应背景更新算法[4]对背景进行插值优化来进行目标和噪声的分类检测,算法检测效果较稳定。这些算法的缺点是运算复杂,不适宜实时处理,对背景更新速度也难以控制。本文提出了一种实时处理的背景自适应更新算法。
2.1 基于统计的背景模型
    常用的描述背景点灰度概率分布是高斯分布,有单模态和多模态两种。固定光照情况下,在估计图像捕获噪声时,单模态高斯模型一般足以表示背景图像的特性,而多模态高斯模型实际上经常出现多表面或光照的改变。由于背景变化相对缓慢,且主要为天空背景,光照变化相对较小,所以用一个自适应单高斯模型来逼近这个过程。设在一段时间内,同一个像素点像素值服从高斯分布,均值为u(i,j),标准方差为?滓(i,j),i和j为像素点在图像中的横坐标和纵坐标:
    
    在开始建模时,每一个像素点的分布是未知的,初始化用第一帧的像素值作为u(i,j),标准方差为0。由于背景信息是通过不断学习更新得到的,兼顾了过去的背景信息,因此该方法对图像中偶然出现的假目标有一定的抑制作用。
2.2 背景抑制
    目前背景抑制有两种方法。
    (1)固定背景差分法。它是一种有效的运动对象检测算法,其特点是高效和简单。但是对于复杂场景的适应性比较差。
    (2)时间间隔图像差分法。这种方法实时性好,适合背景的实时更新。将前后两帧的图像fk(i,j),fk+1(i,j)进行差分处理,背景抑制过程如下:
     
式中,α1、α2为学习因子,控制更新速度,x表示新帧中像素点的灰度值。此背景更新策略不仅可以将背景区域和拖影区域实时更新,还可以控制其更新速度。
3 基于窗口多目标提取算法
    目前图像的目标提取绝大部分是将超过阈值的所有像素点进行连通性分析,然后将同一连通块的所有像素点存储起来,在连通分析结束后对目标进行信息提取[4]。这种方法存在两种缺点:(1)需要大量存储空间来存储超过阈值像素点信息;(2)由于事后进行信息计算,所以对目标提取的实时性有所影响。提出了一种基于窗口的多目标检测算法,原理见图2。

    图像超过阈值的新增像素点按从左到右、从上到下的顺序加入第i个目标判定窗口进行八连通判定。若属于目标i,则马上进行质心、平均灰度等目标信息提取,并且将目标i的窗口按图3所示进行更新。目标i只需存储更新后的窗口坐标范围及与目标相关的提取信息,而不需要存储所有阈值像素点信息。若新增像素点坐标范围在目标i的判定窗口外,则此目标判定结束。详细流程见图3、图4。

4 实验结果
    为了验证系统的准确性、实时性和稳定性,在野外以同时打1,2…,15发信号弹模拟多运动目标来进行测试。相机帧频为40 帧/s,分辨率为2 K×2 K。系统各部分计算时间通过PCI接口传入PC机端进行记录。在背景更新中灰度阈值T为60,学习因子?琢1、?琢2分别为0.82、0.73的条件下,当目标数分别为1,2,…,14,15时测得背景更新消耗时间分别为8.047 ms,9.110 ms,9.341 ms,…,10.101 ms,12.623 ms;目标提取消耗时间分别为9.089 ms,10.411 ms,11.345 ms,…,16.554 ms,18.344 ms。系统采用双DSP二级流水性处理方式。单帧图像背景更新和目标提取最大处理时间为18.344 ms,满足实时处理要求。
    为说明此系统背景更新算法的优越性,将卡尔曼滤波算法与本文方法进行比较。当实际目标数为1,2,3,…,14,15时,前者出现假目标数分别为7,8,7,…,9,10,需要的处理时间分别为12.001 ms,13.384 ms,13.799 ms,…,14.298 ms,14.793 ms;而采用本文方法出现的假目标数分别为1,2,3,…,3,2,需要的处理时间分别是8.047 ms,9.110 ms,9.341 ms,…,10.101 ms,12.623 ms;在比较目标提取方法优越性时,将基于像素的多目标提取方法与基于窗口方法进行了比较。前者需要的处理时间分别为14.153 ms,16.321 ms,17.520 ms,…,19.621 ms,23.691 ms;而本文方法处理时间分别为9.089 ms,10.411 ms,11.345 ms,…,16.554 ms,18.344 ms。
    基于大视场、大容量数据实时处理的要求,设计了基于双DSP和FPGA的嵌入式大面阵多运动目标实时硬件及软件的采集处理系统。应用基于高斯背景模型的自适应背景更新算法,完成了对大面阵小运动目标区域的提取。基于窗口的多目标提取算法解决了以往嵌入式多目标提取空间需求大的问题,实时快速地提取了目标信息。实验证明,该系统处理准确、实时性高、满足靶场弹道测试等大视场多运动小目标的实时提取任务。

关键字:实时图像处理  TI 引用地址:多运动目标实时提取系统设计与实现

上一篇:莱迪思推出具可配SERDES的FPGA低成本设计平台
下一篇:基于TCPIP协议的高精度多路超声信号采集系统

推荐阅读最新更新时间:2024-05-02 21:21

MHEV:优化汽车动力总成以提高效率和降低成本
汽车排放标准一年比一年严格,内燃机 (ICE) 汽车制造商很难符合要求。为减少排放,制造商其中的一项工作便是使传动系统实现部分或全部电气化,以提高发动机的有效效率、部分或完全减少对发动机的依赖(见图 1)。 当然,实现电气化是有代价的,而且涉及一个由来已久的设计问题:如何平衡成本与其他设计要求? 在本文中,我将讨论 48V 轻混合动力电动汽车 (MHEV),并解释该技术如何以大约三分之一的成本实现全混合动力电动汽车大约三分之二的优势。 图 1:常用的电气化传动系统拓扑列表 系统添加 – MHEV 与全混合动力电动汽车 MHEV 使用 48V 电池以一小部分的额外成本实现了全混合动力电动汽车的很多功能。图 2
[汽车电子]
MHEV:优化汽车动力总成以提高效率和降低成本
采用TI能耗测量IC简化辅助计量
  引言   诸如智能插头和电器电度表等辅助计量 (sub-metering) 应用使消费者能够了解和控制其电能使用状况。其他的辅助计量应用(如服务器功率表)则可帮助 IT 部门优化服务器群的功耗。在设计辅助计量表时,像传感器、模拟前端 (AFE) 组件和微控制器 (MCU) 的选择之类的考虑因素对于决定总体系统成本与复杂性有着举足轻重的影响。作为一款有效的实施方案,其应易于设计并具有低量产成本,同时满足应用的主要需求 - 可靠地测量和报告电能消耗信息。本文将讨论 MSP430AFE2xx IC1 在能耗测量应用中的特性与优势。虽然 MSP430AFE2xx 完全适合公用事业级电力表中的能耗测量,不过本文将专门讨论其在辅助计量中的应
[测试测量]
采用<font color='red'>TI</font>能耗测量IC简化辅助计量
德州仪器:2017半导体市场将有高幅成长
根据WSTS(世界半导体贸易统计组织)报告指出,2016年全球半导体营收达到3349.53亿美元,相较于2015年的3351.68亿美元,微幅衰退0.1个百分点。 不过,好消息是,TI(德州仪器)韩国总裁暨台湾总经理李原荣认为,相较于2016年,此二大应用于2017年将会有相当高的成长率。 德州仪器韩国总裁暨台湾总经理李原荣预估,2017年半导体市场的整体状况会有一波上涨的趋势。 车用的部分,随着近年来车联网、自驾车等技术应用的兴起,车用相关的解决方案市场已成为各家大厂的兵家必争之地。 李原荣表示,车辆对于半导体零件的需求量不断地增加,且会直逼笔记本电脑以往所需求的数量;此外,车用电子发展增温,也将为车用市场带来更多新式需求。
[半导体设计/制造]
氮化镓技术将给未来的汽车应用带来哪些变化?
最近在 PCIM Europe 2020、SEMICON China 2020 等一些与功率半导体相关的国际会议上,以 GaN(氮化镓)和 SiC(碳化硅)为代表的宽带隙(WBG)半导体继续占据着演讲台的“C 位”,尤其是 GaN 在未来汽车中的角色更是令人兴奋,为未来很长一段时间的行业发展带来了机遇。今天就谈谈 GaN 和汽车究竟是什么关系,当然也少不了提及其同门兄弟 SiC。 氮化镓欲复制功率 MOSFET 的成功 历史总是惊人地相似。EPC 公司 CEO 兼共同创始人 Alex Lidow 博士讲了一个故事:“44 年前,当我第一次开发功率器件时,‘兽中之王’是硅功率双极晶体管。”1978 年,他的国际整流器公司(
[嵌入式]
氮化镓技术将给未来的汽车应用带来哪些变化?
基于TI DM642和OMAP5912 DSP实验板实现汽车CADAS系统设计
根据报导,中国每年超过11万人死于车祸,大部分的事故皆由人为因素引起,而疲劳与分心则是主要的原因。随着工业的进步,行车安全以及车辆防盗的问题已摆在世界人民面前。虽然瞌睡侦测、脑电波等相关研究都致力于提醒驾驶员,但是其效果并非相当令人满意;加上系统的反应时间以及系统成本因素,无法全面普及。 除了行驶安全的问题让人担忧之外,车辆本身的防盗装置亦使人烦心。根据资料显示[2],中国每年有超过7.2万辆汽车失窃,平均每7分钟就有一辆汽车遭窃,即使目前的车辆在出厂时都配备防盗锁,且使用者自己也会加装防盗窃装置,但是效果并不显著,目前监控系统最多做到传送文字短信至使用者手机作为提醒,但是无法将实时监控的影像连续不断地传送出来,这样就很容易产
[嵌入式]
2016 TI杯全国大学生物联网竞赛决赛圆满落下帷幕
由教育部高等学校计算机类专业教学指导委员会主办,全球领先模拟和嵌入式处理半导体厂商德州仪器(TI)(NASDAQ: TXN)协办的 2016 TI杯全国大学生物联网竞赛 (以下简称 竞赛 )决赛日前于西安交通大学圆满落下帷幕。TI副总裁兼全球教育事业总裁Peter Balyta博士及TI亚太区大学计划总监王承宁博士出席了本次竞赛的闭幕式暨颁奖典礼。本着以学科竞赛推动专业建设和培养大学生创新能力的目标,2016年竞赛致力于为高质量的物联网工程专业人才培养搭建一个交流、展示及合作的平台,并推动物联网技术在相关领域的应用与发展。 德州仪器(TI)副总裁兼全球教育事业总裁Peter Balyta博士在闭幕式暨颁奖典礼上致辞 基于建
[物联网]
2016 <font color='red'>TI</font>杯全国大学生物联网竞赛决赛圆满落下帷幕
TI推出业界最低抖动 PCIe 时钟缓冲器
时钟缓冲器与最新 WEBENCH® 工具结合,可简化时钟树设计。 2014 年 3 月 13 日,北京讯---日前,德州仪器 (TI) 宣布推出两款支持 PCI Express (PCIe) 1 代、2 代以及 3 代接口标准的 4 输出及 8 输出高速电流驱动逻辑 (HCSL) 时钟扇出缓冲器。LMK00334 可为输入时钟创建 4 个缓冲副本,而 LMK00338 则可产生 8 个缓冲副本。与同类竞争器件相比,它们不仅支持锐降 70% 的附加抖动,而且还可支持显著提高的电源噪声抑制,从而可在 PCIe 3.0 规范下为系统设计人员提供足够的抖动容限。这两款器件在 TI 最新 WEBENCH® 时钟架构的支持下,有助于
[网络通信]
TI系列DSP的I2C模块配置与应用
I2C总线最早是由Philips公司提出的串行通信接口规范,标准I2C总线只使用两条线通信,能将多个具有I2C接口的设备连接,进行可靠的通信,连接到同一总线的I2C器件数量,只受总线最大电容400pF的限制,而且最高通信速率可以达到3.4Mb/s,由于I2C接口简单,使用方便,被很多芯片采用,成为一种广泛应用的接口 。 DSP即数字信号处理器,是一种广泛应用的嵌入式处理器,主要应用是实时快速地实现各种数字信号处理算法,目前,国际主要的DSP供应商是TI公司,其TMS32系列产品占据了DSP市场近一半的份额,为了用户能方便快捷的进行系统的开发与集成,TI公司在一些型号的DSP中集成了I2C通信模块,本文以TMS320C6713为例
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved