一种DSP与PCI总线的接口设计

发布者:Yaqi最新更新时间:2011-09-15 来源: e代电子关键字:PCI  DSP 手机看文章 扫描二维码
随时随地手机看文章
   

1 引言

  DSP+PCI数字信号处理方案可利用PC的强大功能实现对DSP的操作控制、数据分析和操作监视等。DSP+PCI方案能充分满足数字图像、语音处理、高速实时数据处理等领域的应用,为DSP系统的低成本实现提供了解决方案。
 

  

 

  2 TS101S型DSP介绍

  本系统采用美国Analog Device公司的

  高性能TIGER SHARC 101S(简称TS101S)作为主处理器。TS101S处理器劫持32bit和64bit浮点,以及8、16、32和64bit定点处理。它的静态超量结构使其每周期能执行多达4条指令,进行24个16bit定点运算和6个浮点运行。其内部有3条相互独立的128bit宽数据总线,每条连接3个2Mbit内部存储块中的一个,提供4字节的数据、指令、I/O访问和14.4Gbyte/s的内部存储带宽。以300MHz时钟运行时,其内核指令周期为3.3ns。在发挥其单指令多数据特点后,TS101S每秒可以进行了24亿次40bitMAC运算或6亿次80bitMAC运算。以300MHz时钟运行时,完成1024点复数FFT(基2)仅需32.78μs,1024点输入50抽头FIR需91.67μs。TS101S有强大的链路口传输功能,每个链路口传输速度达到250Mbyte/s。总的链路数据率达1Gbyte/s(4个链路口),超过了外部口的传输速率(800Mbyte/s)。

  3 PCI介绍

  PCI(Peripheral Component Interconnect)总线是一种不依附于某个具体处理器的高性能局部总线,因此开发PCI设备可独立于处理器,具体由一个桥接电路(PCI桥)实现对这一层的管理,并实现上下之间的接口数据传送。可以把PCI桥描述为实现通用总线与PCI总线的地址映射、协议转换、数据缓存等功能的逻辑接口。

  

TS101S与PCI9054接口电路图

 

  3.1 PCI桥的实现

  开发者可以根据PCI总线规范所定义的电气特性、时序要求来进行接口设计。一种方式是使用可编程逻辑器件(FPGA/CPLD)根据实际需要的功能来设计,这种方式的成本低、灵活性高,但需要对PCI总线协议有充分的掌握,或者需要生产可编程逻辑器件的厂商提供PCI接口功能模块。由于PCI总线的规范较复杂,一般用户都会选择专用的PCI接口电路,无需详细理解底层的PCI总线协议,而只理解到应用层即可。因此,本文介绍的系统采用后一种方案,PCI接口电路采用现在市场上使用较普通的PLX公司的PCI9054。

  3.2 PCI9054

  PCI9054采用先进的PLX数据流水线结构技术,是32位、33MHz的PCI总线主I/O加速器,符合PCI本地总线规范2.2版,有M、C、J三种模式。针对不同的处理器及局总线特性可选,尽量减少中间逻辑;具有可选的串行E2PROM接口,本地总线时钟可和PCI时钟异步。PCI9054内部有6种可编程的FIFO,以实现零等待突发传输及本地总线和PCI总线之间的异步操作,支持主模式、从模式、DMA传输方式,功能强大,可应用于适配卡和嵌入式系统。

  4 DSP+PCI应用实例

  DSP+PCI数字信号处理系统的组成如图1所示。模块信号先输入模/数转换器,然后经过由CPLD锁存数据到DSP1,经链路口到DSP2,数据处理完后再通过PCI9054把数据传到PC。此外CPLD还作为PCI9054与TS101S的接口逻辑转换。采用PCI9054与单个TS101S之间放置双口RAM作为缓存的接口方式。DSP采用EPROM加载方案。

  本系统的特点是以尽量简单的方式来实现系统功能,因此采用了DSP间链路的口互连方式,这样一来,每对链路口互连仅需10条信号线,而采用总线互连方式时需超过100条信号线,可大大简化PCB板的复杂度。二个DSP间保留2个链路通道,总数据速率可达500Mbyte/s。路口互连是ADSP系统的特有功能,也是ADSP处理器能以低成本组成多片高性能信号处理机的主要原因。

  4.1 TS101S与PCI9054的接口

  由于TS101S没有专门的PCI接口,而PCI9054也仅在M模式下才能实现与MPC850或Power QUICC等Motrola电路的无缝连接,因此,T

  S101S与PCI9054之间需要可编程逻辑器件进行逻辑转换。出于对研制周期的考虑,采用一种较为简便的通信方式:在DSP与PCI桥间插入一个双口RAM,双口RAM一端的地址数据线接ISI101S,另一端的地址数据线接PCI9054。通过双口RAM转换数据,并作为公共访问缓冲区。这样,PCI桥与DSP之间的访问成为间接,可以大大削弹对PCI的时序要求,DSP与PCI之间只需少量的信号通过CPLD来实现逻辑转换,而无需总线仲裁,这种方式的时序简单,控制信号较少,DSP与CPLD编程简单,应用更为方便。双口RAM的型号为IDT70261,容量为16k×16bit。

  PCI9054的工作方式为从模式,驱动方为PC,数字信号处理机作为LOCAL端的主机,中间由公用的双口RAM进行读写操作。在时序上,只需几个简单的控制信号进行握手即可实现双向数据传输。由PC主动发出读写命令,可根据需要实现单字节读写,在大多数系统中,这种方式已经满足要求。具体的接口电路如图2所示。

  PIC9054局部总线侧的信号功能如下所述。

  LHOLD:总线请求信号,由PCI9054驱动,高电平有效,有效时表明其正在使用本地总线。

  LHOLDA:总线请求应答,由LOCAL端设备驱动,在LHOLD有效后一个周期有效,直至LHOLD无效后才无效,以向PCI9054表明LOCAL端未占用总线。

  ADS:地址阈门信号,低电平有效,表明一个总线访问周期的开始,第一个时钟有效,持续一个LCLK,此后地址线有效。

  USERo:用户输出信号,由PCI9054驱动,引入CPLD,作为DSP的外部中断请求。

  USERi:用户输入信号,由外部设备驱动,PCI9054可查询到外部设备发出的信号。

  LW/R:读写信号,由PCI9054驱动。

  READY:从模式下为输入信号,当一个访问周期结束时,LOCAL端的设备要向PCI9054发出READY信号,表明完成本次访问,可开始下一轮访问。

[page]

  4.2 系统工作方式

  由于本系统采用RAM缓冲方式,因此PCI9054和DSP间只需握手信号即可。通过DSP的外部中断IRQ和标志引脚FLAG,以及PCI9054的用户输入/输出USERi/USERo相互配合实现握手,可实现基本的单字节读写,如果需要更复杂的功能,可以加上控制字来实现。地址映射是双口RAM的数据宽度为16位,PCI9054地址的LA1-LA14分别接RAM的ADD0-ADD13,PCI映射空间的偏移地址为0-7FFEH,偶地址有效。LA15引入CPLD后可作为双口RAM的片选信号。

  建立通讯的过程是PCI9054发送LHOLD信号,CPLD返回LHOLDA信号;PCI9054发出ADS信号,表示一次读写操作开始,此时CPLD锁存读写信号LW/R,并转换为RAM的R/W或OE信号;CPLD给PCI9054发送READY无效信号,使其保持等待状态。

  信号握手的实现过程是:

  PCI9054向RAM写数据→PCI9054通过USER0发出握手请求到CPLD→CPLD向DSP的IRQ发出中断信号→DSP响应中断→DSP读RAM数据。DSP向RAM写数据→DSP通过FLAG发出握手请求到CPLD→CPLD向PCI9054的USERi发出中断信号→PCI9054查询到中断→PCI9054或RAM数据。时序如图3所示。

 

  

 

  CPLD的程序如下:

  Library IEEE;

  Use IEEE.STD_LOGIC_1164.all;

  Use IEEE.STD_LOGIC_unsigned.all;

  Use IEEE.std_logic_arith.all;

  ENTITY PCI IS

  PORT(

  ADS:IN STD_LOGIC;

  LCLK:IN STD_LOGI

  C;

  LWR:IN STD_LOGIC;

  LHOLD:IN STD_LOGIC;

  LHOLDA:OUT STD_LOGIC;

  READY:OUT STD_LOGIC;

  OE:OUT STD_LOGIC;

  RW:OUT STD_LOGIC);

  END PCI;

  ARCHITECTURE PCI_arch OF PCI IS

  SIGNAL signal_0:STD_LOGIC;

  BEGIN

  PROCESS(LCLK)

  BEGIN

  IF LCLK'EVENT AND LCLK='1'THEN

  IF LHOLD='1'THEN

  IF ADS='0'THEN

  Signal_0<='1';

  ELSIF ADS='1'THEN

  Signal_0<='0';

  END IF;

  END IF;

  END IF;

  IF LCLK'EVENT AND LCLK='1'THEN

  IF LHOLD='1'THEN

  IF LWR='0'THEN

  OE<='0';

  RW<='1';

  ELSIF LWR='1'THEN

  OE<='1';

  RW<='0';

  END IF;

  END IF;    END IF;

  IF LCLK'EVENT AND LCLK='0'THEN

  IF LHOLD='1'THEN

  IF signal_0='1'THEN

  READY<='0';

  ELSIF signal_0='0'THEN

  READY<='1';

  END IF;

  END IF;

  END IF;

  END PROCESS;

  PROCESS(LCLK,LHOLD)

  BEGIN

  IF LCLK'EVENT AND LCLK='0'THEN

  IF LHOLD='1'THEN

  LHOLDA<='1';

  ELSIF LHOLD='0'THEN

  LHOLDA<='0';

  END IF;

  END IF;

  END PROCESS;

  END PCI_arch;

  5 结束语

  本文介绍的DSP与PCI总线的接 接方案灵活简单,减小了布板的复杂度,简化了PCI总线要求的时序,缩短了开发周期。采用该方案设计的数据处理系统工作稳定,已应用在低频信号检测领域中。

关键字:PCI  DSP 引用地址:一种DSP与PCI总线的接口设计

上一篇:基于KeyStone DSP的多核视频处理技术
下一篇:说话人识别算法的定点DSP实现

推荐阅读最新更新时间:2024-05-02 21:34

ADI计划关闭其奥斯汀DSP设计中心
亚德诺公司(ADI)美国时间12月3日透露了其关闭奥斯汀DSP设计中心的计划,并会因此裁员约20人。 尽管ADI公司业绩强劲,但上周仍计划削减支出。“经济衰退意味着你必须决定在哪花钱,”ADI公司营销总监Rob DeRobertis表示,“而现在是时候作出一些决定了。” 奥斯汀中心的20名工程师一直在开发基于流行的Blackfin架构的处理器,这项工作计划将被整合至ADI总部,即马萨诸塞州的Norwood。DeRobertis说,ADI公司仍致力于其DSP的产品线,但同时强调有必要提高效率,其指出,“如果削减你的开销就会呈现一个更好的经济规模” ADI公司裁员是基于宏观经济因素的影响,而不是公司衰退的
[嵌入式]
基于DSP的1553B总线接口电路设计
机载火控数据采集技术需要满足实时采集、实时传输、实时存储以及方便下载的需求,以便于地面人员对获取信息的处理。这样可以更好的动态掌握飞机的作战状态,提高飞行训练效果和作战能力。1553B数据总线作为航空电子综合系统中信息交流的主干道,使机载数据能在复杂的环境中得以保存、交换。DSP作为高速性能的数据处理芯片,可以实现较高速率的数据采集。FPGA作为高速、复杂的组合逻辑和时序逻辑控制器件,更适合外围电路的连接,将两者组合使用,满足了数据的高速传输与存储。同时,随着1553B数据总线协议标准的颁布,许多电器件公司开发了能将1553B数据总线与CPU相连接的相应接口芯片。这样,使得数据在传输过程中更加稳定、高速、可靠。本文旨在探讨采用DS
[嵌入式]
基于<font color='red'>DSP</font>的1553B总线接口电路设计
PCI总线接口技术及其在高速数据采集系统中的应用
    摘要: 一种基于PCI总线的高速数据采集传输系统的实现,讨论了PCI总线控制器9054的性能及三种传输模式,提供了该系统的硬件实现和采用DMA传输方式实现数据传输的设计。     关键词: PCI总线 PCI 9054总线控制器 DMA 数据采集是数字信号处理中非常重要的环节。对于不同的任务,数据采集要达到的技术指标也不相同。对于瞬态信号,雷达信号和图像处理都需要几MB/s甚至几十MB/s的超高速采集速率。目前用于PC机的数据采集卡大部分是基于ISA总线的,这种结构的最大缺点是传输速率太低,不能实现数据的实现高速传输。PCI总线推出后,以其突出的性能备受计算机和通信业界的青睐,将取代以往的总线,
[应用]
2014: DSP市场逐渐进入“检验真理”的阶段
新旧接替时节,全球DSP程序化购买市场可谓你方唱罢我登场。虽说程序化购买是互联网广告发展大势所趋已经毋庸置疑,但究竟如何才能走好“DSP程序化购买”这条路却是各有选择不同。简单来说,除了大型exchange(G-B-A-T)自带的DSP平台外,其他DSP公司可大致分为独立DSP及企业级DSP,其风格定位截然不同。在最近这一周的新闻大潮中,我们似乎可以看到一些把握最终曙光的端倪。潮起潮落,不禁联想到著名的高德纳”Gartner Technology Hype”的曲线,似乎任何新科技都符合曲线上升发展的路线。     先来回顾一下。最近几天,全球DSP市场可谓热闹: 1、广告服务公司Vizury完成2000万美元C轮融资 1月1
[嵌入式]
基于DSP/FPGA高精度测量系统中多电源可靠性设计
由于高精度测量系统工作频率高,数据处理量大,功耗也相对较高,而供电系统的好坏直接影响到系统的稳定性和系统的精度,所以设计高效率、高可靠性的供电系统具有极其重要的现实意义。本文主要叙述了一个实际高精度测量系统的电源设计。   1 DSP和FPGA的电源要求   系统采用Altera公司的Cyclone系列EPIC12型号FPGA和TI公司的TMS320C6713B型号DSP均需要两种电源 :外围I/O电压为3.3V及内核电压分别为1.5V和1.2V。因此必须考虑它们的配合问题:(1)在加电过程中,要保证内核先得到供电,外围I/O后得到供电,内核最晚也应该与周边I/O接口电源同时加电。否则可能会导致DSP和FPGA的输出端出现大电流
[电源管理]
基于<font color='red'>DSP</font>/FPGA高精度测量系统中多电源可靠性设计
基于DSP和CPLD的光纤陀螺信号采集系统设计
0 引言 光纤陀螺作为一种新型的惯性器件,近年来得到越来越多的关注,因为它有许多其他陀螺无法比拟的优越性,比如结构简单,精度高,动态范围大,抗电磁干扰,无加速度引起的漂移且成本低,可靠性好等。陀螺可以为载体提供准确的角速度和角位移等信号,完成对运动体的姿态和运动轨迹控制。其优良的品质使自身能够满足军工和民用对惯性器件苛刻的要求,并得到广泛的应用。 惯性器件的性能直接影响到控制系统本身的稳定性能,所以光纤陀螺被应用到空空导弹中时,需要对陀螺的特性有充分的了解,为此构建了一个陀螺采集系统,以实现对陀螺信号的采集及特性分析。 1 光纤陀螺的工作原理 光纤陀螺是激光陀螺的一种,其基本原理基于Sagnac效应,即用光纤绕制成环柱形
[单片机]
基于<font color='red'>DSP</font>和CPLD的光纤陀螺信号采集系统设计
基于PCI总线模块的多通道串行数据采集系统设计
      目前市面上有多种数据采集卡,但其应用都具有一定的局限性,不可能完全满足用户的需求。本文介绍的数据采集卡可应用于某视频图像采集系统中,数据源发送多路同步串行数据,然后经过数据采集卡传入上位机用以进行后续分析。上位机向外写控制字并转换后以异步串行方式输出。用以控制视频图像的采集。本系统将PCI接口逻辑和其他用户逻辑集成于一片FPGA中,因而大大节省了资源,便于进行串口扩展及其他功能的添加,性能良好,用途广泛。   1 PCI总线   PCI总线是一种高性能的局部总线,具有32位可升级到64位的、独立于CPU的总线结构。工作频率为33/66 MHz,最高传送速度可达132 MB/s(32位、33 MHz)或528 M
[嵌入式]
飞机刹车模糊神经网络DSP嵌入式控制系统
    摘要: 对现有飞机刹车防滑系统的控制算法进行了改进,采用了神经网络的BP算法和模糊实时控制,并且数字信号处理器(DSP)在嵌入式系统中实现了神经网络算法。结果表明,飞机防滑刹车效率有了明显改进,鲁棒性增强。     关键词: 数字信号处理 飞机刹车系统 神经网络 模糊控制 飞机刹车系统是飞机上具有相对独立功能的子系统,承受飞机的动、静态载荷及着陆时的动能,实现飞机制动控制。 从20世纪40年代至今,飞机刹车系统已发展到第四代。第一代飞机刹车系统由离合开关调节压力来实现刹车控制;第二代用固定参考减速度为误差门限进行控制;1967年Hydro-Aire公司的第三代飞机刹车系统,以一定的滑移率为误差门限
[传感技术]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved