基于DSP和FPGA的红外信息数据处理系统

发布者:SerendipityLove最新更新时间:2014-04-26 来源: 互联网关键字:DSP  红外图像  图像处理 手机看文章 扫描二维码
随时随地手机看文章
现代空战中,光电对抗装备在战争中扮演着重要的角色,而红外侦测与跟踪系统由于采用的无源探测技术,因此与雷达等主动探测系统相比具有隐身性强、抗干扰能力好和小型化程度高等优点,受到业内的关注。新一代红外成像导引系统须具备高精度、处理速度快、实时性强且反应时间短等特点,这便要求图像处理计算机能满足图像处理中大数据量、复杂运算、实时性强、高传输率和稳定可靠等要求。文中从工作原理、硬件及软件3个方面介绍了基于DSP和FPGA芯片的红外信息数据处理系统设计方法。

1红外制导控制系统硬件总体设计

红外信息数据处理系统按照功能划分为两大板块,由图像信息处理板和控制信息处理板组成数据处理系统。其红外制导控制信息数据处理系统如图1所示。图像信息处理板主要承担大量的实时图像信号预处理、图像信号处理与控制任务;控制信息处理板控制接口信号的采集,跟踪回路的解算,控制输出及与飞控计算机等的通讯,同时控制管理模块也是系统的管理模块,完成对系统的输入/输出操作、同步控制、系统状态管理等功能。


图1 红外信息数据处理系统框图

2图像处理模块的硬件设计

图像处理模块的硬件由复位电路、时钟电路、图像采集及预处理电路、DSP图像处理电路、电源转换电路和外部接口等电路组成。组成框图如图2所示。


图2 图像采集单元电路组成

2.1图像采集单元

图像采集单元包括扫描同步接口电路、探测器接口电路、前端调整电路、A/D转换电路、采样控制与数据整合电路及数据缓存(同步双口)电路等组成。电路组成框图如图2所示。扫描同步信号是来自系统中扫描模块,该信号提供系统时序基准,其信号同步于帧同步信号。扫描同步信号从底板连接器接入。探测器接口电路包括:参考电源、温度信号、采样控制信号及2路视频模拟信号等,以上信号在FPGA内部采集电路的控制下,保证每帧图像数据的同步采集。调整电路将探测器输出的视频信号调整至高速A/D输入的范围,差分视频信号经差分驱动器放大驱动,其共模输入电压为视频A/D片内参考信号(2.5 V)。模拟信号输入到A/D采用差分输入方式。视频A/D主要用于将视频电路间的模拟信号与数字信号进行转换。根据电路整体要求,A/D转换电路需满足采样频率高、功耗低、转换精度高等要求。采样控制和数据缓存电路由FPGA内部采样控制电路完成。数据缓存电路由FPGA内部双口存储器完成,具有高速、可同步及异步读写操作等性能。

2.2 DSP图像处理电路

DSP图像处理电路主要包括处理器及外围配置电路、存储器电路及与控制板接口通信的McBSP串口电路等。处理器选用TI公司高性能定点TMS320C641x系列中C6414 GIZA-6E3作为图像信息处理C6414-6E3,时钟周期为1.67 ns,内部工作时钟可达600 MHz,最高处理速度可达4 800 MIPS;内部存储器容量8 Mbit;有2个扩展存储器接口,EMIFA为64 bit,EMIFB为16 bit,EMIFA的总线频率可达133 MHz,最大可寻址空间为1280 MB;内核工作电压为1.4 V,工作温度可达-40~105℃。其完成红外成像制导导引头图像组合、分割与增强、模板匹配、背景处理、目标提取和目标跟踪等主处理算法。

FPGA预处理单元是图像信息处理板上另一个核心部件,采用Xilinx公司Vertex-II系列中的XC2V2000-FG676来实现。XC2V2000具有200万门的规模,内部的存储资源有1 Mbit的Select RAM,336 kbit的Distributed RAM,IO管脚资源达到408个,8个DCM.FPGA预处理单元设计由视频采集控制与数据整合单元、视频采集缓冲和主处理缓冲双口存储器、预处理单元、图像输出子卡数据传输接口控制、串行SPI接口控制器、LVDS数字视频输出接口、访问DSP/HPI接口的主机控制电路等部分组成。另外,图像信息处理板的FPGA配置可实现外场在线配置功能。

存储器电路包括Flash、FPGA内部同步双口两种存储器。可与C6414的(EMIF外部存储器接口,C64有2条总线EMIFA与EMIFB)连接,在使用时需通过DSP/BIOS对EMIF总线进行配置,确定访问时序。图像信息处理板上有2片Flash资源分别属于DSP和FPGA,其中属于FPGA的Flash保存的是板上控制代码,属于DSP的Flash除用以存储模块BOOT程序,还可对用户应用程序进行存储。为了采用从并方式配置FPGA,将其所属Flash连接在C6414的EMIFB异步BANK CE0,采用异步的读写信号;为支持C6414从ROM引导的机制,DSP所属Flash连接至C6414的EMIFB异步BANK CE1采用异步的读写信号。双口存储器主要用于存储帧图像数据,在图像信息处理板的FPGA上配置了双口存储器。应用中可通过FPGA设计配置同步或异步双口存储器与C6414实现数据交换,容量按图像帧大小可配置为16 kbit×16 bit,也可配置16位或32位访问方式。图像信息处理板上双口存储器连接在C6414的EMIFA同步BANK ACE0空间,可配置同步方式或异步方式。

3控制信息处理模块的硬件设计

控制信息处理板由处理器、时钟及复位电路、存储器、数字脉冲计数与逻辑控制电路、模数转换A/D电路和指示灯电路组成。如图3所示。

控制信息处理板信号处理器采用TMS320F2812,由30 MHz晶体提供输入工作时钟,16位总线宽度,可访问128 kW的片上程序存储空间和64 kW的数据存储空间,具有三级外部中断。时钟电路采用外部晶振为F2812提供30 MHz的时钟输入,由内部PLL电路配置F2812工作时钟为120 MHz,外部总线工作时钟为60 MHz.复位电路由本板的LDO电源转换器输出,复位输入经CPLD的逻辑控制均产生控制信息处理板DSP的复位。控制信息处理板主要有以下存储器配置:F2812片内存储器包括:18 kW的SARAM、128 kB的Flash、4kB的Boot Rom.片外存储空间包括:512kB的SRAM、1 kB的飞控计算机双口存储空间、3路数字脉冲计数电路的数据寄存器及板上2片A/D转换器的数据端口地址等。

可编程逻辑CPLD电路完成控制信息处理板的3路数字脉冲计数、复位电路和译码逻辑等,译码逻辑由F2812的外部存储器片选信号和高位地址线一并通过逻辑译码产生访问A/D芯片及与飞控模块接口的片选信号。

CPLD实现对3路数字脉冲信号进行计数测频的原理是;将3路数字脉冲信号经CPLD测频电路对脉冲信号进行计数处理后,通过软件编程由F2812定时读取。

2片A/D转换器实现9路模拟量输入的模数转换,A/D电路见图4.系统输入9路差分交流模拟信号,这9路模拟信号需使用差分运放调整至0~+5 V,同时输入到A/D转换器,采样时钟由CPLD控制。



4软件功能设计


图像控制信息处理系统结构复杂、接口繁多。因篇幅限制,仅对验证其是否满足成像导引系统和目标信号处理系统指标要求的BIT测试方法作了简要介绍。A/D测试选用数字化FFT方法进行,Flash和RAM类的测试用读写比较片内空间数据完成判断,接口类测试通过硬件接口从外部输入模拟信号后运行软件对运算结果进行阈值判断实现,图像数据传输率测试通过EMIF总线与FPCA内部的同步双口RAM配置为主从式测试回路方法而实现。而BIT测试结果则通过RS422接口转RS232接口,连接PC机显示。测试结果显示直观,局部电路出现故障易于定位。

5结束语

文中针对弹载计算机红外图像信息处理的需求,以DSP(TMS320C6414)处理器+FPGA(XC2V2000-FG676)为核心开发了数据处理系统,进行了软硬件设计。经测试结果表明,该系统具有较强的处理能力,调试方便,在发生硬件故障时易于定位。
关键字:DSP  红外图像  图像处理 引用地址:基于DSP和FPGA的红外信息数据处理系统

上一篇:基于DSP的晶闸管数字触发器的研究与设计
下一篇:基于DSP和ARM的音频处理系统设计

推荐阅读最新更新时间:2024-05-02 23:04

TS101S型DSP与PCI总线的简易接口设计
1 引言 DSP+PCI数字信号处理方案可利用PC的强大功能实现对DSP的操作控制、数据分析和操作监视等。例如系统无需再有专门的人机界面(如键盘、监视屏),只需将数据上传至PC中显示即可。也可将PC作为主控机实现对数据流上下行的控制和工作模式选择等。DSP+PCI方案能充分满足数字图像、语音处理、高速实时数据处理等领域的应用,为DSP系统的低成本实现提供了解决方案。 2 TS101S型DSP介绍 本系统采用美国Analog Device公司的高性能TIGER SHARC 101S(简称TS101S)作为主处理器。TS101S处理器劫持32bit和64bit浮点,以及8、16、32和64bit定点处理。它的静态超量结构使其每周期
[嵌入式]
基于DSP的嵌入式通用主动视觉系统
主动视觉(Active Vision)是当今计算机视觉和机器视觉研究领域中的一个热门课题。主动视觉强调的是视觉系统与其所处环境之间的交互作用能力。具体地说,主动视觉系统应具有根据自己在当前环境中所处的状态,如几何位置、姿态、摄像机的成像光学条件等,调整自身各部分的状态参数,使其能够达到一个最佳成像状态,从而使系统能够最方便地完成特定的视觉任务,如动态地跟踪物体的运动。主动视觉系统的研制与开发具有重要意义和广泛的应用前景,如各类导弹的成像导引头、机器人、人机交互研究等。 以往的主动视觉系统大多采用以图形工作站为中心,由图形工作站完成图像的采集、处理、跟踪控制,再通过RS232等接口控制执行机构运动以完成跟踪任务。以图形工作站为中心
[嵌入式]
医疗图像处理原理解析: 从形成到解读
上个世纪在医疗成像领域实现的技术进步为非侵入诊断创造了前所未有的机会,并确立医疗成像作为医疗健康系统的组成部分。代表这些进步的主要创新领域之一是医疗图像处理的跨学科领域。 这一快速发展的领域涉及从原始数据采集到数字图像传输的广泛流程,而这些流程是现代医疗成像系统中完整数据流的基础。如今,这些系统在空间和强度维度方面提供越来越高的分辨率,以及更快的采集时间,从而产生大量优质的原始图像数据,必须正确处理和解读这些数据才能获得准确的诊断结果。 本文重点介绍医疗图像处理的关键领域,考虑特定成像模式的环境,并讨论该领域的主要挑战和趋势。 医疗图像处理的核心领域 有许多概念和方法用于构建医疗图像处理领域,这些概
[物联网]
医疗<font color='red'>图像处理</font>原理解析: 从形成到解读
基于DSP和ADS8364的高速数据采集处理系统
  随着现代科学技术的发展和计算机技术的普及,高速数据采集系统已应用于越来越多的场合,如通信、雷达、生物医学、机器人、语音和图像处理等领域。本文介绍的数据采集处理系统采用CPLD控制ADS8364完成数据的A/D转换,转换后的数据预先存储到FIFO中,再经DSP进行前端的数字信号处理后,通过USB总线传给上位机,并在上位机上进行存储、显示和分析等。该系统完全可以满足信号采集处理对高精度及实时性的要求。    1 系统原理   数据采集处理系统主要由前端信号调理电路、ADC芯片ADS8364、CPLD芯片EPM3128A、DSP芯片TMS320F2812、USB芯片CY7C68013及其外围电路组成。系统原理框图如图l所示。
[嵌入式]
基于DSP控制技术的逆变器谐波失真消除
1 引言     随着数字处理系统应用的快速发展,许多设备,如报警系统,健康护理设备和安全照明设备等对高品质不间断电源的需求也就随之增加。而且随着高频静态功率变换器的广泛使用,包括临界载荷在内的许多电力负载都成为了非线性的,并将产生谐波。因此,必须应用附加谐波滤波技术来保证UPS逆变器有高品质的正弦输出电压。     一台典型的在线式UPS系统框图如图1所示,它主要是由以下几部分组成:整流滤波电路、充电器、逆变器、输出变压器及滤波路、静态开关、充电电路、蓄电池组和控制监测、显示告警及保护电路。其中最主要的部分就是由整流器提供存储能量的蓄电池组和把直流电压转换成正弦交流输出的逆变器。由于与输出相连接的非线性负载的影响,使得U
[嵌入式]
小功率单相光伏并网逆变器设计
0 引言 自20世纪90年代以来,太阳能发电技术得到了持续高速发展,光伏并网发电已经成为当今太阳能主要利用形式之一。并网逆变器作为并网发电系统的核心环节,已经成为该领域的研究热点。本文基于光伏并网逆变器的基本原理和控制策略,提出了一种单相光伏并网逆变器的电路设计方案,从功率回路、采样、驱动以及保护等模块介绍逆变器的硬件设计到结合逆变器实际控制结构的软件设计,通过实验证明,本设计能够很好地达到并网的要求。 1 光伏并网系统的组成 结合以上控制策略与光伏并网发电系统结构及逆变器的实际需求,设计了一种单相可调度式光伏并网发电系统。如图1所示,此系统主要有光伏阵列、Buck/Boost变换电路、全桥逆变器、滤波电路、工频隔离变压器、
[单片机]
小功率单相光伏并网逆变器设计
基于DSP的超声编码激励发射研究
  传统医学超声成像系统通常采用单一脉冲波 ,为了获取高的信噪比,需要提高发射的脉冲峰值功率,这样就受到安全诊断阈值的限制及超声换能器非线性制约。因此,传统的医学超声系统存在脉冲峰值功率高、信噪比差、穿透力弱等缺陷。   现代超声医学成像系统采用编码激励脉冲序列来替代单一脉冲作为发射信号 ,这降低了发射脉冲的峰值。在接收信号时经过相关解码电路探测到人体深部的微弱回波信号,选择一组二值自相关性好的编码序列(如GOLAY互补序列对),将其作为超声编码激励成像系统的发射编码,来达到提高图像的信噪比和穿透力,实现动态超声图像的实时处理。   本文以GOLAY码互补序列对为例研究了基于DSP的超声编码激励发射。实验数据表明信号信杂比
[嵌入式]
基于<font color='red'>DSP</font>的超声编码激励发射研究
TMS320C54x DSP在线烧写FLASH存储器并实现自举引导的方法
摘要:通过一个完整的实例,详细阐述了TMS320C54x系列DSP芯片在线烧写FLASH存储器。并实现自举引导的方法。给出了硬件连接方案和完整的C语言烧写程序。 关键词:TMS320C54x FLASH 烧写 自举引导 在DSP系统中通常贴片式FLASH存储器保存程序,并且在上电或复位时再将存储在FLASH中的程序搬移到DSP片内或者片外的RAM中全速运行。这个“程序搬移”的过程叫做自举加载。 本文以TMS320C5416 DSP对MBM29LV400BC存储器的操作为例,详细阐述了在线烧写FLASH并实现自举加载的方法。该方法适合于大多数C54x系列DSP对符合JEDEC标准的FLASH的操作。为便于读者使用,本文的程序
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved