1引言
随着计算机技术、电子技术和通信技术的迅猛发展,音频处理技术也在众多领域得到广泛应用。如通信领域中的手机、IP电话,消费类电子产品中的MP3和CD播放器以及控制领域中的语音识别、声控系统等[1].针对DSP强大的数字信号处理能力和ARM处理器良好的实时性能,结合音频编解码芯片TLV320AIC23的接口特点,本文阐述了由三者组成的音频处理系统的硬件接口设计和软件编程,提供了有效和实用的音频处理系统方案。
TLV320AIC23(简称AIC23)是TI公司的一款高性能立体声音频编解码器Codec芯片。其内部集成的模数转换器(ADCs)和数模转换器(DACs)采用了带有过采样数字插补滤波的多位Sigma-Delta技术。数据传输字长为16、20、24、32位,支持采样频率范围8kHz至96kHz.ADC和DAC的信噪比分别达到90dB和100dB.内置耳机输出放大器,支持MIC和LINE IN两种输入方式,且对输入和输出都具有可编程增益调节。另外,AIC23功耗低,回放模式下功率仅为23mW,省电模式下更是小于15uW.因此,AIC23成为数字音频应用
领域中的理想选择[2],在多种数码产品中发挥着重要作用,比较典型的应用如手机、MP3、DV摄像机中的音频编解码。
TMS320VC5402(简称VC5402)是TI公司的一款优秀16位定点DSP,运算速度快,指令执行速度达到100MIPS.自带片内存储器和多种片上外设,广泛应用于语音编解码和通信领域[3].
S3C4510B(简称4510B)是Samsung公司的一款低成本、高性能的16/32位精简指令集微控制器,其出色的ARM7TDMI内核以及通用微处理器宏单元使其成为用户定制应用开发的理想选择[4].
2系统硬件设计
本音频处理系统主要由前述三个处理芯片组成:ARM控制单元,DSP信号处理单元以及AIC23音频采集单元。系统原理框图如图1.
图1基于DSP和ARM的音频处理系统原理框图
AIC23是可编程芯片,内部有11个16位寄存器,编程设置这些寄存器可得到所需的采样频率、输入输出增益和传输数据格式等。该控制接口有SPI和I2C两种工作模式,由芯片上的MODE引脚进行选择:MODE=0为I2C模式,MODE=1为SPI模式。因ARM 4510B上也有I2C接口,故选用I2C模式。AIC23的I2C接口地址由引脚的状态决定,=0时地址为0011010,=1时地址为0011011.其中SDIN与SDA为数据线,SCLK与SCL为串行时钟线。VC5402有两个多通道缓冲串口,选用其中的McBSP0与AIC23进行通信,信号连接如图1所示。图中AIC23工作在主模式,时钟信号、DAC和ADC的帧同步信号BFSX0和BFSR0都由AIC23提供。而DSP VC5402与ARM 4510B的通讯是通过DSP上的HPI接口实现的。
3系统软件设计
系统由ARM系统和DSP系统两大部分组成,ARM作为主控制器管理整个系统的工作进程,运行相关的应用程序,可对多个任务进行调度,完成与外部DSP系统或其他外设的通信。DSP则主要完成音频数据的采集和信号处理,并将处理后的数据发送给ARM供应用程序调用。这样的设计可以大大提高系统的工作效率,这也是当前嵌入式系统,各移动手持设备如PDA、手机等的典型设计方案。
这里具体要做的是对AIC23的控制接口编程,使其工作在所需的模式下。然后初始化DSP的McBSP,进行AD、DA转换和数据处理。
3.1 ARM编程部分
系统中对ARM的编程主要涉及对AIC23的初始化,使其进入正常工作状态,对音频数据进行采集和处理。这需要设置4510B的I2C总线特殊功能寄存器:控制状态寄存器IICCON、预分频寄存器IICPS和移位缓冲寄存器IICBUF,寄存器相关说明见表1[5].
表1 4510B I2C总线特殊功能寄存器
AIC23的11个控制寄存器相关设置的详细描述参见文献2.这里的设置为:左右声道线路输入静音;耳机左右声道音量为6dB;使能DAC,麦克风音量为20dB作为ADC输入;使能ADC高通滤波;芯片各部分电路供电使能;芯片工作在主模式,采样数据长度16位,采用DSP数据格式(同步帧后跟随两个数据字);采样率88.2KHz(外部晶振为11.2896MHz);使能数字接口。
对AIC23编程时的I2C总线时序如图2所示。设置好I2C的时钟频率后,首先发送开始条件(SCLK为高电平时,SDI从高电平向低电平切换),然后发送AIC23的器件地址,器件地址发出后发送AIC23相应寄存器的地址,再发送对该寄存器设置的数据,最后发送停止条件(SCLK为高电平时,SDI从低电平向高电平切换)。注意,这里的寄存器地址为7位,寄存器数据为9位,而I2C总线以字节为单位传送数据。因此在对AIC23的寄存器编程时,第一个字节包括了前7位的寄存器地址B15-B9以及设置数据的最高位B8,第二个字节为设置数据的后8位B7-B0.
图2 I2C时序
3.2音频数据采集与播放
初始化AIC23后,再初始化DSP以及McBSP0,之后进行音频数据的采集与播放。通过麦克风采集语音信号,经过数字滤波处理后由耳机输出。使用McBSP0的接收中断保存数据,通过FIR数字滤波子程序处理音频数据。程序流程如图3所示。
图3音频数据处理程序流程图
初始化McBSP0使其与AIC23协调工作,这里要根据硬件设计和软件要求来配置McBSP0的各个控制寄存器。本系统中串口的主要设置为:接收数据右对齐,带符号扩展;接收中断使能;由片外提供发送、接收帧信号和发送、接收时钟信号;发送、接收帧同步信号低电平有效;在时钟上升沿采样发送、接收数
据;每帧发送、接收两个16位字数据[6].
数据接收部分可在DSP中断程序中用如下语句实现:
mvkd drr10,*ar5 ;保存数据
pshd *ar5+% ;数据压入堆栈
popd new_ad ;从堆栈弹出数据到自定义的寄存器
FIR滤波的相关程序如下:
ld new_ad,a ;新数据加载至累加器
stm #1,ar0 ;双操作数增量
stm #N,bk ;设置循环缓冲区长度,即FIR滤波级数(N为滤波级数)
stl a,*ar3+% ;新数据送至ar3指向的缓冲区
rptz a,#(N-1) ;重复执行N-1级的乘加运算
mac *ar2+0%,*ar3+0%,a ;ar2为系数指针,结果在累加器高位中
sth a,temp ;保存计算结果
ld temp,a ;结果放入累加器低位 ……
stlm a,dxr10 ;将累加器地位中的数据送至串口发送寄存器
……
基于前述对AIC23和DSP的相应设置,采用21级系数对称FIR数字滤波,对经由麦克风输入的语音信号进行滤波处理,滤波结果由耳机输出,实际效果良好。所采集到的音频数据还可通过HPI接口传送至ARM供应用程序调用。
3.3语音识别应用测试
语音识别的基本原理是对语音信号进行特征提取。目前常用的语音识别算法有基于模式匹配的动态时间规正法(DTW: Dynamic Time Warping)、基于统计模型的隐马尔柯夫模型法(HMM: Hidden Markov Model)以及基于神经网络的识别法(DNN、NPN、TDNN)等[7].为便于系统应用测试,本文采用一种最简易的方法对系统进行调试,即对英文元音的识别。基本原理是提取元音字母的频率特征,各元音在其频域响应中都有三个明显的共振峰频率,而最容易识别的是第一共振峰,由此可进行有效的元音识别。在提取第一共振峰频率特征时采用“零交越”法(统计单帧信号波形穿越零点的次数——过零率),将信号频率特征的分析转换为时域分析,计算得到的过零率与理论值进行比较即可实现元音的识别。图4所示分别为元音“A”的时域和频域图。
图4元音A的时域图和频域图
由频域采样图可以看到很明显的第一共振峰,此时计算时域采样中信号的过零率可较为准确的识别元音A,过零率的计算中近似等于零的采样点通常是微弱的干扰,可以忽略不计。经验证,这种简易单元音识别法的识别率在80%以上,由此证明本系统音频处理的实用性。
4结束语
本文阐述了基于信号处理和嵌入式应用的音频处理系统的设计和实现。论述了系统的硬件设计、软件编程及其应用。通过ARM对音频芯片AIC23的控制和DSP与AIC23的通信,实现了音频信号采集、处理、输出的功能以及简单的语音识别。构建了基于ARM和DSP的音频处理系统应用框架,对进一步的数据处理、控制应用等提供了切实可行的软硬件方案。
参考文献
1张大波。嵌入式系统原理、设计与应用。北京:机械工业出版社,2004.11
2 TLV320AIC23, Stereo Audio CODEC, 8- to 96-kHz, With Integrated Headphone Amplifier. Texas Instruments Incorporated, 2002
3 TMS320VC5402, Fixed-Point Digital Signal Processor. Texas Instruments Incorporated, 2000
4 S3C4510B User‘s Manual. Samsung Electronics, 2001
5李驹光。 ARM应用系统开发详解:基于S3C4510B的系统设计。北京:清华大学出版社, 2004
6 TMS320C54xx McBSP to TLV320AIC24 Interface. Texas Instruments Incorporated, 2003
7黄涛,胡宾。基于SPCE061A单片机的非特定人语音识别设计。微计算机信息,2006,3-2:19-20
关键字:嵌入式系统 音频处理系统 DSP
引用地址:基于DSP和ARM的音频处理系统设计
随着计算机技术、电子技术和通信技术的迅猛发展,音频处理技术也在众多领域得到广泛应用。如通信领域中的手机、IP电话,消费类电子产品中的MP3和CD播放器以及控制领域中的语音识别、声控系统等[1].针对DSP强大的数字信号处理能力和ARM处理器良好的实时性能,结合音频编解码芯片TLV320AIC23的接口特点,本文阐述了由三者组成的音频处理系统的硬件接口设计和软件编程,提供了有效和实用的音频处理系统方案。
TLV320AIC23(简称AIC23)是TI公司的一款高性能立体声音频编解码器Codec芯片。其内部集成的模数转换器(ADCs)和数模转换器(DACs)采用了带有过采样数字插补滤波的多位Sigma-Delta技术。数据传输字长为16、20、24、32位,支持采样频率范围8kHz至96kHz.ADC和DAC的信噪比分别达到90dB和100dB.内置耳机输出放大器,支持MIC和LINE IN两种输入方式,且对输入和输出都具有可编程增益调节。另外,AIC23功耗低,回放模式下功率仅为23mW,省电模式下更是小于15uW.因此,AIC23成为数字音频应用
领域中的理想选择[2],在多种数码产品中发挥着重要作用,比较典型的应用如手机、MP3、DV摄像机中的音频编解码。
TMS320VC5402(简称VC5402)是TI公司的一款优秀16位定点DSP,运算速度快,指令执行速度达到100MIPS.自带片内存储器和多种片上外设,广泛应用于语音编解码和通信领域[3].
S3C4510B(简称4510B)是Samsung公司的一款低成本、高性能的16/32位精简指令集微控制器,其出色的ARM7TDMI内核以及通用微处理器宏单元使其成为用户定制应用开发的理想选择[4].
2系统硬件设计
本音频处理系统主要由前述三个处理芯片组成:ARM控制单元,DSP信号处理单元以及AIC23音频采集单元。系统原理框图如图1.
图1基于DSP和ARM的音频处理系统原理框图
AIC23是可编程芯片,内部有11个16位寄存器,编程设置这些寄存器可得到所需的采样频率、输入输出增益和传输数据格式等。该控制接口有SPI和I2C两种工作模式,由芯片上的MODE引脚进行选择:MODE=0为I2C模式,MODE=1为SPI模式。因ARM 4510B上也有I2C接口,故选用I2C模式。AIC23的I2C接口地址由引脚的状态决定,=0时地址为0011010,=1时地址为0011011.其中SDIN与SDA为数据线,SCLK与SCL为串行时钟线。VC5402有两个多通道缓冲串口,选用其中的McBSP0与AIC23进行通信,信号连接如图1所示。图中AIC23工作在主模式,时钟信号、DAC和ADC的帧同步信号BFSX0和BFSR0都由AIC23提供。而DSP VC5402与ARM 4510B的通讯是通过DSP上的HPI接口实现的。
3系统软件设计
系统由ARM系统和DSP系统两大部分组成,ARM作为主控制器管理整个系统的工作进程,运行相关的应用程序,可对多个任务进行调度,完成与外部DSP系统或其他外设的通信。DSP则主要完成音频数据的采集和信号处理,并将处理后的数据发送给ARM供应用程序调用。这样的设计可以大大提高系统的工作效率,这也是当前嵌入式系统,各移动手持设备如PDA、手机等的典型设计方案。
这里具体要做的是对AIC23的控制接口编程,使其工作在所需的模式下。然后初始化DSP的McBSP,进行AD、DA转换和数据处理。
3.1 ARM编程部分
系统中对ARM的编程主要涉及对AIC23的初始化,使其进入正常工作状态,对音频数据进行采集和处理。这需要设置4510B的I2C总线特殊功能寄存器:控制状态寄存器IICCON、预分频寄存器IICPS和移位缓冲寄存器IICBUF,寄存器相关说明见表1[5].
表1 4510B I2C总线特殊功能寄存器
AIC23的11个控制寄存器相关设置的详细描述参见文献2.这里的设置为:左右声道线路输入静音;耳机左右声道音量为6dB;使能DAC,麦克风音量为20dB作为ADC输入;使能ADC高通滤波;芯片各部分电路供电使能;芯片工作在主模式,采样数据长度16位,采用DSP数据格式(同步帧后跟随两个数据字);采样率88.2KHz(外部晶振为11.2896MHz);使能数字接口。
对AIC23编程时的I2C总线时序如图2所示。设置好I2C的时钟频率后,首先发送开始条件(SCLK为高电平时,SDI从高电平向低电平切换),然后发送AIC23的器件地址,器件地址发出后发送AIC23相应寄存器的地址,再发送对该寄存器设置的数据,最后发送停止条件(SCLK为高电平时,SDI从低电平向高电平切换)。注意,这里的寄存器地址为7位,寄存器数据为9位,而I2C总线以字节为单位传送数据。因此在对AIC23的寄存器编程时,第一个字节包括了前7位的寄存器地址B15-B9以及设置数据的最高位B8,第二个字节为设置数据的后8位B7-B0.
图2 I2C时序
3.2音频数据采集与播放
初始化AIC23后,再初始化DSP以及McBSP0,之后进行音频数据的采集与播放。通过麦克风采集语音信号,经过数字滤波处理后由耳机输出。使用McBSP0的接收中断保存数据,通过FIR数字滤波子程序处理音频数据。程序流程如图3所示。
图3音频数据处理程序流程图
初始化McBSP0使其与AIC23协调工作,这里要根据硬件设计和软件要求来配置McBSP0的各个控制寄存器。本系统中串口的主要设置为:接收数据右对齐,带符号扩展;接收中断使能;由片外提供发送、接收帧信号和发送、接收时钟信号;发送、接收帧同步信号低电平有效;在时钟上升沿采样发送、接收数
据;每帧发送、接收两个16位字数据[6].
数据接收部分可在DSP中断程序中用如下语句实现:
mvkd drr10,*ar5 ;保存数据
pshd *ar5+% ;数据压入堆栈
popd new_ad ;从堆栈弹出数据到自定义的寄存器
FIR滤波的相关程序如下:
ld new_ad,a ;新数据加载至累加器
stm #1,ar0 ;双操作数增量
stm #N,bk ;设置循环缓冲区长度,即FIR滤波级数(N为滤波级数)
stl a,*ar3+% ;新数据送至ar3指向的缓冲区
rptz a,#(N-1) ;重复执行N-1级的乘加运算
mac *ar2+0%,*ar3+0%,a ;ar2为系数指针,结果在累加器高位中
sth a,temp ;保存计算结果
ld temp,a ;结果放入累加器低位 ……
stlm a,dxr10 ;将累加器地位中的数据送至串口发送寄存器
……
基于前述对AIC23和DSP的相应设置,采用21级系数对称FIR数字滤波,对经由麦克风输入的语音信号进行滤波处理,滤波结果由耳机输出,实际效果良好。所采集到的音频数据还可通过HPI接口传送至ARM供应用程序调用。
3.3语音识别应用测试
语音识别的基本原理是对语音信号进行特征提取。目前常用的语音识别算法有基于模式匹配的动态时间规正法(DTW: Dynamic Time Warping)、基于统计模型的隐马尔柯夫模型法(HMM: Hidden Markov Model)以及基于神经网络的识别法(DNN、NPN、TDNN)等[7].为便于系统应用测试,本文采用一种最简易的方法对系统进行调试,即对英文元音的识别。基本原理是提取元音字母的频率特征,各元音在其频域响应中都有三个明显的共振峰频率,而最容易识别的是第一共振峰,由此可进行有效的元音识别。在提取第一共振峰频率特征时采用“零交越”法(统计单帧信号波形穿越零点的次数——过零率),将信号频率特征的分析转换为时域分析,计算得到的过零率与理论值进行比较即可实现元音的识别。图4所示分别为元音“A”的时域和频域图。
图4元音A的时域图和频域图
由频域采样图可以看到很明显的第一共振峰,此时计算时域采样中信号的过零率可较为准确的识别元音A,过零率的计算中近似等于零的采样点通常是微弱的干扰,可以忽略不计。经验证,这种简易单元音识别法的识别率在80%以上,由此证明本系统音频处理的实用性。
4结束语
本文阐述了基于信号处理和嵌入式应用的音频处理系统的设计和实现。论述了系统的硬件设计、软件编程及其应用。通过ARM对音频芯片AIC23的控制和DSP与AIC23的通信,实现了音频信号采集、处理、输出的功能以及简单的语音识别。构建了基于ARM和DSP的音频处理系统应用框架,对进一步的数据处理、控制应用等提供了切实可行的软硬件方案。
参考文献
1张大波。嵌入式系统原理、设计与应用。北京:机械工业出版社,2004.11
2 TLV320AIC23, Stereo Audio CODEC, 8- to 96-kHz, With Integrated Headphone Amplifier. Texas Instruments Incorporated, 2002
3 TMS320VC5402, Fixed-Point Digital Signal Processor. Texas Instruments Incorporated, 2000
4 S3C4510B User‘s Manual. Samsung Electronics, 2001
5李驹光。 ARM应用系统开发详解:基于S3C4510B的系统设计。北京:清华大学出版社, 2004
6 TMS320C54xx McBSP to TLV320AIC24 Interface. Texas Instruments Incorporated, 2003
7黄涛,胡宾。基于SPCE061A单片机的非特定人语音识别设计。微计算机信息,2006,3-2:19-20
上一篇:基于DSP和FPGA的红外信息数据处理系统
下一篇:基于多DSP互联技术的频谱监测仪研究
推荐阅读最新更新时间:2024-05-02 23:04
PC104总线与DSP数据通信接口设计
从1982年世界上诞生了首枚DSP芯片后,经过20多年的发展,现在的DSP属于第五代DSP器件。其系统集成度更高,已将DSP芯核及外围器件综合集成到单一芯片上,DSP逐渐成为数字信号处理器的代名词。同时,数字信号处理技术在理论和算法上也取得了突破性进展,他本身也形成了比较完善的理论体系,包括数据采集、离散信号与离散系统分析、信号估计、信号建模、信号处理算法等内容。DSP技术已在航空航天、遥测遥感、生物医学、自动控制、振动工程、通讯雷达、水文科学等许多领域有着十分广泛的应用。通过数据采集系统将原始数据传送到DSP,DSP完成算法的处理是工程上的一种应用模式,数据的传送可以通过各种计算机总线来实现。
PC104是一种专门为嵌
[电源管理]
基于ARM的无线视频传输系统的设计
个人计算机设备及其外设的无线化一直是行业趋势,随着科技进步,无线鼠标、无线键盘、无线路由等无线设备纷纷问世。但是目前几乎所有在使用的投影仪都使用线缆和计算机连接,在商务、科研的会议或展示场合,这往往会带来不便。 视频传输数据量大、实时要求高,而完成无线视频传输,无线链路的数据吞吐量必须大于视频数据流量。近年来Wi-Fi标准不断演进,传输速度越来越高;另一方面,嵌入式处理器的处理能力越来越强,并且芯片厂商会在某些嵌入式处理器中集成DSP核心,使得嵌入式系统的视频解码能力有了一个大幅提高,完全能够完成高解析度的视频解码,这使得传送经过压缩的视频数据成为可能,从而间接地降低了视频数据流所占带宽的大小。这一切,使得无线视频传输成为可
[单片机]
用DSP器件设计一款车辆视频处理系统,从此远离交通事故
引言 目前,交通监控应用系统大多以紧急报警、车辆定位与语音通信为主,图像方面的应用不多。本文正是基于这样的考虑,设计了车辆图像采集与处理系统。该系统采集车后方的图像信息,实时地传送给前方的显示屏显示,司机可通过显示屏实时观测后方路面及车辆状况,倒车时可以及时发现后方障碍物及行人,安全避让。 实时图像采集处理系统 的组成及工作原理 本系统由模拟摄像头采集视频数据,通过视频解码芯片将模拟视频信号转换为数字视频信号。CPLD 作为采样控制器,完成数字视频数据的存储和时序控制。本设计选用 TMS320C6416 实现系统控制和数据处理。具体组成如图 1 所示。 视频采集模块 图像的输入由模拟摄像头完成
[汽车电子]
基于DSP的CANopen通讯协议的实现
1 引言 CANopen是一个开放的、标准化的应用层协议,在各种控制系统中得到了广泛的应用。依靠CANopen协议的支持,可以对不同CAN厂商的设备通过总线进行实时通讯。 本文针对自主研发的全数字电机伺服驱动系统,使用CANopen通讯协议实现了CAN总线数字信号处理器(DSP)系统与上位机CAN卡之间的通讯,并通过测试实验验证了信息传递的可靠性,保证了全数字网络化伺服驱动系统中对电机控制的快速性、准确性和实时性。 2 通讯系统实现的基本原理 2.1 LF240x系列DSP的CAN控制器模块 LF240x系列DSP的CAN控制器模块,是一个完全的CAN控制器。具有以下特性 : (1)完全支持CAN2.0B协议; (2)对象有6个邮
[嵌入式]
一种DSP芯片外围电路典型设计
引 言 DSP(数字信号处理器)芯片是一种能够实时快速地实现各种数字信号处理算法控制的微处理器,已经在通信与信息系统、信号与处理、自动控制、雷达、航空航天、医疗等许多领域得到了广泛的应用。 目前生产DSP芯片的厂家主要有TI公司、AD公司、Motorola公司等。其中TI公司推出的TMS320C2XX系列是继TMS320C2X和 TMA320C5X之后的一种低价格、高性能16位定点运算DSP。TMS320F206是2XX系列的代表之一,性价比高,应用广泛,目前已成为高档单片机的理想替代。TMS320F206的性能特点如下:指令周期达25 ns;可寻址64 k程序空间、64 k数据空间、64 k I/O空间以及32
[嵌入式]
一种用AD7858提高DSP采样精度的新方法
0 引言 TI公司生产的TMS320x系列DSP是专为实时信号处理而设计的。该系列DSP控制器将实时处理能力和控制器外设功能集于一身,可为控制系统的应用提供一个理想的解决方案。笔者在设计一款新型金属探测器时,采用TMS320LF2407xA芯片来对AD采样数据进行分析,从而成功地实现了对电机运转的控制。 DSP芯片TMS320LF2407XA内部具有10位A/D转换器。但是,由于它仅含有10位A/D转换器,若除去第一位符号位,也就是真正有用的只有九位,达不到本项目的检测精度要求。为此,本文介绍一种通过外接12位A/D转换器(AD7858)来提高DSP检测精度的新方法。 1 AD7858的主要特性 AD7858是AD公司推出
[应用]
基于DSP的嵌入式数字摄像夜间能见度测量系统
摘要: 数字摄像夜间能见度仪的关键技术之一在于高速、实时地处理CCD采集的目标光源和黑体的图像信息。设计了一种基于TMS320DM642的小型化、便携嵌入式能见度测量系统,从硬件和软件上给于实现,并将其应用到数字摄像夜间能见度测量中。利用CCD采集25帧/s的PAL制视频流,数字化后送入DSP处理器,通过DSP实现目标光源与黑体的图像分割与定位算法,完成数字摄像夜间能见度的测量。实验结果表明设计的嵌入式系统能较好完成夜间能见度的测量。 关键词: DSP;图像处理;夜间能见度;嵌入式系统 0 引言 能见度是气象观测中的重要参数,其对于航空航天、铁路、公路等具有重要的应用价值。数字摄像法是根据能见度定义以及人眼视
[模拟电子]
基于TMS320DM642的嵌入式TCP/I P协议栈的实现
嵌入式视频通信系统由视频数据采集、处理和通信等部件组成,需要嵌入式网络协议栈的支持。中央处理器采用DSP,占用了大量资源,而网络协议栈能够使用的运算资源、内存资源有限,并且缺乏操作系统给网络协议栈的实现带来困难。针对视频监控应用,本文提出了在TI公司的高性能DSP芯片TMS320DM642(以下简称DM642)上实现精简的TCP/IP协议栈的解决方案,阐述了其硬件接口电路的设计及软件实现。 1 TCP/IP协议栈分析 嵌入式TCP/IP协议栈具有TCP/IP协议栈的基本功能,它运行于以太网环境下,其软件模型如图1所示。 最底层是物理层,定义了以太网控制器的工作方式,实现以太网帧的封装、发送和接收。本系统使用Inte
[网络通信]