一种基于CPLD的DSP人机接口模块设计

发布者:superstar11最新更新时间:2014-08-22 来源: 互联网关键字:CPLD  DSP 手机看文章 扫描二维码
随时随地手机看文章

在超高速领域和实时测控方面有非常广泛的应用,日前的普遍基于E2PROM和Flash电可擦除技术,可实现100次以上擦写循环。

选择及其扩展模块的设计

由于A是3.3v电平供电的,所以CPLD我们也选择3.3v电平供电的XL型号。XC95144XL是Xilinx公司 XC9500系列的一种。它的性能指标为;IO口可配置为3.3v或5v操作。所有输出都提供24mA驱动能力;XC295144XL有100个宏单元、 3200个可用门和144个寄存器;实现在系统编程,所有器件都支持IEEE1149(JTAG)边界扫描,最小编程/擦除周期为10000次。

其中,(Digital Signal Processor)与CPLD的连接是通过的外部存储器接口实现的。我们通过/IS管脚将其扩展到外部I/O空间,数据总线的高8位和地址总线的低8位与CPLD相连,并且我们将的CLKOUT引脚与CPLD的IO/GCK2连接,为CPLD提供时钟源,由干CLKOUT输出的频率非常高,所以DSP与CPLD的连线应该尽量短,而且要做一些抗干扰的处理,XINT2是DSP的中断引脚,它的作用是当CPLD确定键盘按键的数值后,利用中断将键值传送到DSP中。

CPLD硬件结构设计如图所示

 

一种基于CPLD的DSP人机接口模块设计

 

CPLD的设计主要是利用CPLD对键盘、液晶和各种状态指示灯进行控制。由于的I/O管脚和各种特殊功能是复用的,如果将键盘、LCD显示以及各种状态指示灯直接和DSP相连的话,这将造成它的极大浪费,所以我们在它们中间用CPLD作为桥梁。

另一更为重要的原因是键盘和LCD显示是在一个相对较低的速度下实现的,这对于高速数据处理的DSP来说是无法接受的,我们设计的主要用意是:

对于LCD显示,我们将DSP中的数据发送到CPLD,然后DSP去做其他的事情,而后续显示的任务由CPLD完成,CPLD将在LCD允许的速度下对其进行操作即可达到显示目的。

对于键盘,我们将键盘的各种处理进行完之后通过中断来通知DSP,然后DSP进行取数操作,这样的话并不会影响到整个系统的运行速度。 function ImgZoom(Id)//重新设置图片大小 防止撑破表格 { var w = $(Id).width; var m = 650; if(w

液晶显示模块硬件设计

由于LCD具有低功耗、体积小、质量轻、超薄等诸多其他显示器无法比拟的优点,它广泛用干各种智能型仪器和低功耗电子产品中。对于数据采集系统来说,液晶显示模块主要功能是显示系统的采样速率及试样所受的应力值。为了解决快速DSP和慢速外设之问接口的问题,根据上述分析系统采用了以CPLD为桥梁的液晶显示模块。其主要的工作流程是:DSP把显示的数据送给CPLD,然后DSP去做其他的事情,而后续显示的任务将在LCD允许的速度下得到显示。

液晶显示模块选择

数显液晶模块:这是一种由段型液晶显示器件与专用的集成电路组装成一体的功能部什,只能显示数字和一些标识符号。

液晶点阵字符模块:它由点阵字符液晶显示器件和专用的行列驱动器及必要的连接件、结构件装配而成,可以显示数字和西文字符,一般本身具有字符发生器。这种模块的点阵排列是由5×7成5 x 8,5×1的一组像素点阵排列而成的。每组为一位,每位间有一点间隔,每行间也有一点的间隔,所以不能显示图形。

直剪仪数据采集系统的显示特点是不仅能显示模拟拉剪的过程,也要能显示中文、西文操作菜单和各种测量数据,所以以上两种液晶显示模块均不符合本仪器的显示要求。

我们选用的是大连东福的EDM240128F点阵图形LCD。它的最大特点是具有独特的硬件初始值设置功能,显示驱动所需的参数如占空比系数。驱动传输的字节数/行及字符的字体选择等均由引脚电平设置,这样初始化在上电时就已经基本设置完成,软件操作的主要精力就可以全部用于显示画面的设计上了,可以图形方式、文本方式及图形和文本合成方式进行显示,以及文本方式下的特征显示,还可以实现图形拷贝操作。它采用T6963C内核控制器,图2为液晶显示模块硬件设计的原理图。

 

一种基于CPLD的DSP人机接口模块设计

 

电平转换芯片的选择

由于CPLD为3.3V的器件,而LCD是5V的器件。所以为了CPLD和LCD之间的电平匹配,需要借助电平转换芯片来完成从3.3V到5V之间的相互转换。选择的电平转换芯片是TI公司的SN74LVC4245A芯片,这个芯片的数据传输方向是双向的,在引脚DIR的作用下,既可以实现从 3.3v向5v转换,也可以实现从5v向3.3v转换。

为了液晶模块能够正确的工作,液晶需要上电复位。本设计中采用的字体是8×8点,所以在硬件电路设计时将FS引脚拉低。

在硬件设计时,我们需要注意的问题是:

(1)在VDD对地(Vss)间接0.1u左右电容去耦,接10u或20u电容滤波;

(2)模块的复位脚/RST接一个复位电路,而且我们也将/RST与CPLD相连,这样我们也可以利用DSP对其进行复位,使得可以是液晶进行定时刷新,预防一些其他干扰;

(3)在做实验时,FG(铁框地线、不能悬空,暂时与数字地连接。

键盘硬件设计

键盘在信号采集系统中是一个很关健的部件,它能向系统输入数据、传送命令等功能,是人工干预系统的主要手段,本系统所用键盘是常用的4×4矩阵式键盘。

16个键盘有0~9数字键,上翻,下翻键,编程键,输入键,擦除键,点号健等。键盘的行线和列线分圳连接CPLD的一个I/O引脚。键盘的行线上有一个2.7k的上拉电阻将行线所连接的CPLD的I/O引脚上拉直高电平。

 

一种基于CPLD的DSP人机接口模块设计

 

键盘工作原理

按键设置在行、列线空点上,行、列线分别连接到按键开关的两端。行线通过上拉电阻接到3.3v上。平时无按键动作时,行线处于高电平状态,而当有按键按下时,行线的电平状态将由与此行线相连的列线电平决定。列线电平如果为低,则行线电平亦为低,列线电平如果为高,则行线电平亦为高。这一点是识别矩阵键盘按键是否按下的关键所存。由于矩阵键盘中行、列线为多键共用,各按键均影响该键所在行和列的电平。因此各按键彼此将互相影响,所以必须将行、列线信号配合起来并作适当的处理,才能确定闭合键的位置。

结语

本文简单介绍了TI16位控制器DSP与液晶显示模块及键盘模块之间的接口方案.利用了CPLD来进行逻辑转换和控制。提供了一种高速器件和慢速接口直接的连接方法,通过这个接口方案研究,为以后系统的开发提供了一种新的思路。

关键字:CPLD  DSP 引用地址:一种基于CPLD的DSP人机接口模块设计

上一篇:一款基于DSP和CPLD的低压断路器智能控制器设计
下一篇:基于DSP+SPWM的变频器设计及实现

推荐阅读最新更新时间:2024-05-02 23:08

基于C语言在FPGA上实现DSP的解决方案
硬件设计者已经开始在高性能DSP的设计中采用FPGA技术,因为它可以提供比基于PC或者单片机的解决方法快上10-100倍的运算量。以前,对硬件设计不熟悉的软件开发者们很难发挥出FPGA的优势,而如今基于C语言的方法可以让软件开发者毫不费力的将FPGA的优势发挥得淋漓尽致。这些基于C语言的开发工具可以比基于HDL语言的硬件设计更节省设计时间,同时不需要太多的硬件知识。由于具有这些优势,FPGA技术不仅可使这些器件作为I/O器件的前端,FPGA还可实现大量的高带宽和运算密集型应用的实时处理。此外,FPGA还可很紧密地与板上存储器结合,并在一块电路板上集成多个器件。更好的是,FPGA电路板可通过新兴的串口通讯标准进行通讯,如RapidI
[单片机]
基于C语言在FPGA上实现<font color='red'>DSP</font>的解决方案
基于ARM Cortex-M3和DSP的逆变电源设计
引 言   在电气智能化发展无处不在的今天, 无数用电场合离不开逆变电源系统( Inverted Pow er Supply System,IPS) 为现场设备提供稳定的高质量电源, 特别在如通信机房、服务器工作站、交通枢纽调度中心、医院、电力、工矿企业等对电源保障有苛刻要求的场合。许多IPS产品因遵循传统设计而不符合或落后于现代电源理念,突出表现为控制模块的单一复杂化, 控制器芯片落后且控制任务繁重, 模拟闭环控制而得不到理想的监控和反馈调节效果, 并由此带来单个控制设备软硬件设计上的隐患, 这对IPS 电源输出造成不利影响, 甚至对用电设备因为供电故障而导致灾难性后果。数字化控制技术日趋成熟, 而且在某些领先理念的电源设备控
[电源管理]
基于ARM Cortex-M3和<font color='red'>DSP</font>的逆变电源设计
FPGA/CPLD中常见模块设计精华集锦(-)
    一、智能全数字锁相环的设计   1 引言   数字锁相环路已在数字通信、无线电电子学及电力系统自动化等领域中得到了极为广泛的应用。随着集成电路技术的发展,不仅能够制成频率较高的单片集成锁相环路,而且可以把整个系统集成到一个芯片上去。在基于FPGA的通信电路中,可以把全数字锁相环路作为一个功能模块嵌入FPGA中,构成片内锁相环。   锁相环是一个相位误差控制系统。它比较输入信号和振荡器输出信号之间的相位差,从而产生误差控制信号来调整振荡器的频率,以达到与输入信号同频同相。所谓全数字锁相环路(DPLL)就是环路部件全部数字化,采用数字鉴相器(DPD)、数字环路滤波器(DLF)、数控振荡器(DCO)构成的锁相环路,其
[嵌入式]
CEVA最新传感器中枢DSP助力联咏科技
CEVA最新传感器中枢DSP助力联咏科技 新型多传感器IP摄像头SoC - NT98530智能摄像头SoC集成了CEVA SensPro2 DSP,支持在设备上应对先进的计算机视觉和边缘AI工作负载 - 两家企业将参加CES 2023展会,在CEVA会议室展示这款SoC产品 全球领先的无线连接和智能感知技术及共创解决方案的授权许可厂商CEVA, Inc.(纳斯达克股票代码:CEVA) 宣布已授权予领先的无晶圆厂芯片设计公司联咏科技(Novatek Microelelctonics Corp),让其在瞄准监控、零售、智能城市、交通等领域的最新一代NT98530多传感器IP摄像头SoC中部署使用CEVA
[嵌入式]
CEVA最新传感器中枢<font color='red'>DSP</font>助力联咏科技
TMS320C5000性能介绍-数字信号处理器
TMS320C54x是目前普遍使用的定点DSP芯片。它的特点是功耗很低(在100MIPS时为60mW),可用于数字蜂窝通信、个人通信系统、寻呼机、个人数字助理(PDA)、ATM(异步传输模式)交换机、数字无线通信、调制解调器等领域。图1表示了C54x的发展过程及应用领域。 图1 TMS320C5000性能发展状况及应用领域 TMS320系列的同一代芯片具有相同的CPU结构,但根据市场的不同需要,形成新的存储器与外设的不同组合,产生了多种派生器件。 TMS320C54x关键特性 图2是C54x功能结构图,它的主要性能如下: 图2 TMS320C54x功能结构框图 ⒈ CPU 先进的多总线结构:一组程序总线
[应用]
DSP滤波器用于扩展数字化仪器的性能
   DSP滤波器的应用范围   DSP在数字化测量系统中有多种功能获得广泛采用,它们可改善有限取样率引起的频率响应、相位响应、噪声性能、带宽扩展等指标。数字化测量系统(如数字化仪、数字示波器)的DSP配置如图1所示,DSP对A/D转换后的模拟信号数据流进行数字处理,最常用的功能有快速傅立叶变换(FFT)、数字调制、增益控制、编码/解码等在数字通信中广为人知的运算,而在数字化测量系统中最重要的功能是数字滤波器,DSP滤波器作为软件滤波器能够提供比硬件滤波器更优异的特性。数字化测量系统对被测波形的数学运算即可使用有限冲激响应(FIR)滤波器,亦可使用无限冲激响应(IIR)滤波器,DSP滤波器可视为一种修改波形形状的数学程序。根据要
[模拟电子]
基于DSP的声雷达信号采集系统
在声雷达系统中,发射机定向发出不同频率的声信号,随后接收不同距离上的回波信号,利用回波中频率的偏离可以测定风速、风向随高度的变化。本文介绍的基于美国模拟器件公司的DSP ADSP-TS201S和ADC AD7864的 信号采集系统 能够满足这些要求。   系统的设计   1 系统功能模块划分   声雷达信号采集系统主要由信号采集、信号处理、电源和时钟四部分组成,如图1所示。信号采集模块由CPLD和4片ADC组成,负责完成A/D转换;转换后的数据送至信号处理模块,DSP ADSP-TS201S负责数据的接收和处理,两片512k×32b的SRAM完成了多帧数据的存储任务;一片双口RAM为ADSP-TS201S和其他处理器板交换
[嵌入式]
基于<font color='red'>DSP</font>的声雷达信号采集系统
TMS320VC5402DSP与51单片机的接口设计技术
TMS320VC5402(VC5402)是德州仪器公司推出的具有较高性价比的定点数字信号处理器。VC5402增强外设由软件等待状态发生器、锁相环时钟发生器、6通道直接存储器访问(DMA)控制器、增强型8位并行主机接口(HPI)等组成。两个可编程的多通道缓冲串口(McBSP)能够全双工、快速地与其他同步串口进行数据交换,硬件连接简单,串口的工作模式和传送数据的格式可通过编程实现。DSP和单片机之间的通信一般利用双口RAM,通过串口或DSP的HPI接口实现。 利用双口RAM实现 CY7C026是CYPRESS公司生产的16k×16B高速双口静态RAM,存取速度小于25ns。他具有真正的双端口,可以同时进行数据存取,两个端口具有独立的
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved