基于瞬时无功电流理论三相谐波提取的DSP实现

发布者:脑力风潮最新更新时间:2015-12-03 关键字:DSP 手机看文章 扫描二维码
随时随地手机看文章
0 引言

有源滤波器是目前国内外谐波抑制技术的一个重要研究方向,在国外APF技术已得到了大量应用。APF技术的原理就是把三相畸变电流的谐波提取出来作为指令电流,控制PWM主电路产生一反向的谐波电流以补偿电网中的谐波电流,因此,三相谐波电流提取的效果直接决定了APF谐波补偿的效果。

1 现有三相谐波检测方法

图1是典型并联结构的APF原理框图。谐波电流的检测方法都是基于非正弦条件下有功功率和无功功率定义而产生的。三相谐波检测的方法很多,从目前的资料看主要有以下几种。

 

图1 并联结构APF原理框图

1)方法1 采用模拟带通滤波器检测高次谐波电流[1],这种方法的优点是电路结构简单,造价低,输出阻抗低,品质因素容易控制,但是,模拟滤波器的元件容易受外界影响,而且当电网频率发生波动时,实际检测出的谐波电流中含有较多的基波分量。

2)方法2 基于频域分析的FFT[2]和DFT[3]分解方法,这种方法将非正弦的交流电流表达为基波电流和谐波电流之和,然后根据三角变换方法将基波电流进一步分解为无功电流和有功电流。这种方法由于计算很复杂,因而有较大延迟。

3)方法3 基于自适应干扰抵消原理的自适应闭环检测方法[4],这种方法把电压作为参考输入,负载电流作为原始输入,构成一闭环连续调整的谐波及无功电流自适应检测系统,这种方法虽然也是采用模拟电路实现,但是这种检测系统的运行特性基本与元件参数无关。

4)方法4 基于广义瞬时无功功率p,q计算方法,这种方法是目前APF中常用的一种方法,其主要原理框图如图2所示。这种方法是基于瞬时无功功率理论,它先计算出有功功率p和无功功率q,然后经低通滤波器(LPF)得到有功功率和无功功率的直流分量,然后通过功率和电压计算出三相的基波分量。这种方法的一个局限就是只能应用在电网电压无畸变的时候。

 

图2 pq运算提取三相谐波的原理框图

5)方法5 基于广义瞬时无功功率电流的计算方法,这种方法也是本文要讨论的谐波提取方法,是方法4在瞬时无功功率理论上进一步扩展的结果,其具体原理将在下面讨论。这种方法的优点就是在电网电压有畸变的情况下,也能够精确地提取谐波电流。

2 基于广义瞬时无功功率电流理论的谐波电流检测方法

瞬时无功功率理论最早于1983年由日本学者Akagi[5]提出来;西安交通大学王兆安教授于1992年进一步深入研究了三相电路瞬时无功功率理论 [6],进一步定义了三相电路的瞬时无功功率和各相的无功功率和无功功率电流,研究了广义瞬时无功功率理论和传统理论的关系,从而在理论上为方法4、方法 5的谐波提取方法提供了依据。文献[7]及[8]详细地比较研究了这两种谐波电流检测方法,从理论上分析了方法5不受电网电压畸变影响的原因,并仿真研究了这一结论。基于广义瞬时无功功率电流理论的简单阐述就是:无论电网电压畸变与否,三相电流对称与否或者是否畸变,正序三相电流ia,ib,ic经过dq 变换后的id,iq可以表示成式(1)的形式。id为d轴电流直流分量,它与负载的基波有功功率相对应;iq为q轴直流分量,它与负载基波相位移无功功率相对应,d轴交流分量

、q轴交流分量

和O轴分量io与负载基波不对称及高次谐波无功功率相对应。

idqo=

=C

=

(1)

式中:

C=

×

基于无功功率电流理论,谐波电流检测方法的计算框图如图3所示。从图3不难看出,计算主要分为4个过程。

 

图3 dq变换提取三相谐波的原理框图

[page]

1)dqo变换,将abc坐标系的三相电流转换到dqo坐标系;

2)低通滤波,将id,iq中的直流分量id,iq分别滤出来;

3)dqo/abc变换,将id,iq转换成abc坐标系下的基波电流iaf、ibf、icf;

4)提取谐波。

其计算公式如式(2)所示。

iih=ii-iif(2)

式中:i表示a,b,c相。

3 低通滤波器的设计

从上面的分析不难看出,基于广义瞬时无功功率电流谐波检测方法的效果主要还是取决于低通滤波器的设计。

3.1 数字滤波器种类的选择和模拟滤波器原型的选择

无限响应滤波器的特点就是实现同等要求的数字滤波器阶数要比有限响应滤波器低很多,一般关系[9]是1/5~1/10,而且无限响应滤波器设计有现成的闭合公式、数据和表格,因此计算量小很多。有限响应滤波器有严格的线性相移,因此稳定性比无限响应滤波器要好。根据APF的要求,数字滤波器要滤除的是直流分量,因此可以不考虑相移;另外为了缩减DSP运算时间宜选用无限响应滤波器。

模拟滤波器目前主要有Butterworth、Eliptic、Chebychev、Bessel等几种。从幅频特性曲线可知,当截止频率较低时,Butterworth检测精度最高,这是因为它的频率特性在零点附近最好;如果截止频率增大一些Elliptic滤波器的精度最好,Chebychev滤波器次之,Butterworth稍差一点,Bessel滤波器最差。而Bessel滤波器动态相应过程最快,依次是 Butterworth, Chebychev, Ellipitic。考虑到系统的稳定性,Butterworth Chebychev,Ellipitic,Bessel依次递减。因此本文采用的是Chebychev。

3.2 采样频率fs和截止频率fc

采样频率过高则对低频处理精度影响较大,因为采样频率过高则低通滤波器运算时对字长的要求很高;采样频率过低则对高于采样频率一半频率段进行采样时会采到低频错误信号。APF对电网谐波提取主要考虑5次、7次、11次和13次,13次信号的频率为650Hz,本次采样频率选择1500Hz。

截止频率fc越小,谐波电流的检测精度越高,但动态响应过程太慢,截止频率fc越大,可以加快动态响应过程,但由于低次谐波未被LPF衰减掉,容易造成检测波形失真,影响检测精度。APF中电流最低次谐波为5次,经dq变换后为4次即200Hz。综合考虑截止频率选用130Hz。

最后用归一化滤波器计算得传递函数为:

H(z)=

4 仿真和实验结果

为了研究基于广义瞬时无功电流理论方法的特点和验证上述滤波器的设计正确性,用MATLAB仿真了谐波的提取。图4是输入畸变电流和提取的基波电流、谐波电流的仿真波形。为了验证实际的效果,用DSP2407实现上述运算过程。图5为畸变电流和提取的基波电流波形。图6为畸变电流和谐波电流波形。

 

(a)输入畸变电流

 

(b)输入畸变电流的基波

 

(c)输入畸变电流的高次谐波

图4 输入畸变电流、提取的基波和谐波电流波形

 

(纵轴:500mV/div,横轴:10ms/div)

图5 输入畸变电流和提取基波电流实验波形

 

(纵轴:1V/div,横轴:10ms/div)

图6 输入畸变电流和提取的谐波电流实验波形

5 结语

本文总结了目前国内外三相谐波电流检测的各种方法,详细讨论了一种基于广义瞬时无功电流理论dq变换检测谐波电流的方法的原理,并分析了这种方法中低通数字滤波器的设计过程,讨论了低通滤波器的特性和实际提取效果的关系。最后仿真和实验研究了基于dq变换检测谐波电流方法的效果。

关键字:DSP 引用地址:基于瞬时无功电流理论三相谐波提取的DSP实现

上一篇:基于瞬时无功电流理论三相谐波提取的DSP实现
下一篇:基于DSP处理器的红外电视调焦控制器设计

推荐阅读最新更新时间:2024-05-03 00:07

基于数字信号处理器和GPS技术实现PMU测量系统的设计
随着全球卫星定位系统(GPS)的广泛应用,基于GPS的实时相量测量装置PMU(Phase Measurement Unit)很好地解决了电力系统广域空间同步测量的问题,并形成了电网广域测量系统WAMS(Wide Area Measurement System)。PMU在全网统一的时间坐标系下(通过接收GPS的同步时钟信号),对电力系统不同节点的电压和电流进行同步采样,通过数据处理生成各节点电压、电流的正序相量,由GPS给每个相量打上时间标签,然后将这些信息实时传送到控制中心。控制中心在统一的时标下,根据各个PMU的测量信息对电力系统的状态进行分析,进行全电网的稳定控制、事故预警等。 本文提出的PMU构成方案,充分利用了数字信号
[测试测量]
基于<font color='red'>数字信号处理器</font>和GPS技术实现PMU测量系统的设计
基于DSP的汽车减震弹簧故障诊断仪的设计
摘要:介绍了一个基于TMS320VC5409的汽车减震弹簧故障诊断系统的基本原理、总体设计方案与软硬件的设计。以真实的车辆减震弹簧进行多次试验,证明了该仪器工作稳定,能够有效地完成汽车减震弹簧的故障诊断,具有很好的应用前景。 关键词:DSP 故障诊断 非线性频谱分析 GFRF 汽车减震弹簧故障诊断仪的基本原理是基于非线性频谱分析技术的。这种技术的基本思想是:根据采样得到的减震弹簧的输入和输出数据,利用有效的非线性系统辨识方法得到弹簧的振动方程,再利用多维傅里叶变换得到减震弹簧的非线性传递函数的频域表示形式—广义频率响应函数GFRFGeneralized Frequency Response Functions。GFRF是描
[应用]
基于ISA总线的通用多DSP目标系统
1 概 述 随着大规模集成电路水平的发展,以数字信号处理器(Digital Signal Process,DSP)为基础的实时数字信号处理技术正在迅速发展,现已广泛应用于图像处理技术、语声处理、智能化仪表、生物医学与工程、通信、自动控制等领域。由Analog Device公司生产的ADSP是应用非常广泛的一类DSP,其典型产品有定点的ADSP2181和浮点的ADSP21060。在许多实际系统中,需要采用多片DSP级联的方式进行处理。因此,ADSP2181经常经级联后用在实际系统中,我们设计了基于ISA总线的通用多DSP目标系统,这种系统可以用于早期研发及各种算法的硬件平台,他对缩短实际系统开发周期、项目预研等都有重要意义和应用价值
[嵌入式]
CEVA 在全球DSP授权市场占据78%份额
领先的硅产品知识产权(SIP)平台解决方案和数字信号处理器(DSP)内核授权厂商CEVA公司宣布,获领先研究机构The Linley Group评为2009年全球DSP授权销售额和授权DSP出货量的领导企业,其市场份额分别为78% 和80%。这些数据来自The Linley Group近期出版的题为 “移动和无线半导体市场份额” (Mobile and Wireless Semiconductor Market Share 2009) (注1) 的研究报告。 The Linley Group分析员兼 “2009年移动和无线半导体市场份额” 报告作者Joseph Byrne称:“CEVA公司是DSP IP领域至今为止最成功
[嵌入式]
基于VC++雷达信号系统软件测试平台的设计
  随着电子计算机技术及电子设备的飞速发展,人们对数据的处理容量、处理速度以及工作平台的实时监控等性能的要求越来越高,从而使得高速、便捷、智能化的高性能数字处理设备成为当今电子设备的发展趋势。   由于一些气象雷达站一般地处环境与气候恶劣的偏远地区。雷达站内雷达信号处理系统的检测与维修存在一定的难度。当系统出现故障要进行检修时,由于地理环境的限制,检修在时间上会有一定的拖延,人们希望对于非硬件电路损坏的故障,能够通过软件平台进行监控,并通过软件来及时对系统进行维护与系统恢复。该软件设计的目的就是为了避开雷达系统存在着一定的机械性和不方便性的缺点来完善该雷达信号处理系统。该软件利用VC++的友好界面来实现PC机、DSP、 HSP
[嵌入式]
DSP片外高速海置SDRAM存储系统设计
    在数字图像处理、航空航天等高速信号处理应用场合,需要有高速大容量存储空间的强力支持,来满足系统对海量数据吞吐的要求。通过使用大容量同步动态RAM(SDRAM)来扩展嵌入式DSP系统存储空间的方法,选用ISSI公司的IS42S16400高速SDRAM芯片,详细论述在基于TMS320C6201(简称C6201)的数字信号处理系统中此设计方法的具体实现。  1 IS42S16400芯片简介     IS42S16400是ISSl公司推出的一种单片存储容量高达64 Mb(即8 MB)的16位字宽高速SDRAM芯片。SDRAM的主要特点是:①同步访问,读写操作需要时钟;②动态存储,芯片需要定时刷新。IS42S16400采用CMOS
[嵌入式]
基于TMS320C6678 DSP的电源设计方案
TMS320C6678 DSP是TI最新发布的一款基于KeyStone架构的DSP,芯片内有8个内核,工作速度可达10 GHz.随着这款产品各方面的性能指标增加,对电源供应也提出了很高的要求,普通的稳压电源早已不能满足。由于现在的信号处理板上大多需要多片DSP协同工作,所以在本设计中,以两片6678DSP电源方案为例,将UCD9244作为电源的主要控制芯片,设计出的电源可同时满足这两片DSP的供电需求。   1 电源硬件电路设计与计算   1.1 系统总体方案设计   图1是系统的组成框图。采用统一的12 V电源进行供电,DSP的内核电压由一片UCD9244和两片UCD7242组成;经过TPS54620产生的3.3 V电
[嵌入式]
基于TMS320C6678 <font color='red'>DSP</font>的电源设计方案
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved